Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Pollut Res Int ; 28(3): 3307-3317, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32915453

ABSTRACT

Cadmium (Cd) is a highly toxic heavy metal. It accumulates in biological tissues, especially in fish which constitutes a first rank food for humans, particularly in the coastal areas. This study investigates the effect of long-term exposure to low Cd concentration (17 µg/kg/day) in rat striatum and hippocampus. In this study, the neurobehavioral ability changes were assessed by applying cognitive standard testing at the end of the rats' exposure period. In addition, the examination of mitochondrial swelling was performed at the same time of evaluation of its redox status in the brain regions studied through stress parameters (GSH, MDA, GST, and CAT). This study examined also whether this long-term exposure can modify the apoptotic signaling pathway via assessment of apoptotic markers (caspase-8 and 9, Bax, Bcl-2, and Cyt-c) in cell lysates. The results of this study showed changes in neurobehavioral abilities of animals and a stronger mitochondrial swelling associated with a significant decrease in antioxidant systems (GSH, GST, and CAT) and conversely an increase in the lipoperoxidation end product (MDA) in both the striatal and hippocampal mitochondria. In addition, the results revealed a significant increase in pro-apoptotic intracellular components such as caspase-9, Cyt-c, and Bax, and showed also an evident decrease in Bcl-2 levels. In conclusion, our results reported that chronic exposure to Cd produces behavioral and cognitive perturbations, enhances oxidative stress associated with mitochondrial edema and Cyt-c leakage, and, ultimately, potentiates apoptosis signaling pathway in both brain regions in rats.


Subject(s)
Apoptosis , Cadmium , Animals , Cadmium/toxicity , Hippocampus , Oxidative Stress , Rats , Signal Transduction
2.
J Hazard Mater ; 170(1): 156-62, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19497669

ABSTRACT

Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.


Subject(s)
Chromium/isolation & purification , Decontamination/methods , Industrial Waste/prevention & control , Tanning , Chelating Agents , Methods , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL