Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Drug Dev Res ; 83(8): 1906-1922, 2022 12.
Article in English | MEDLINE | ID: mdl-36322473

ABSTRACT

Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.


Subject(s)
Antineoplastic Agents , Porifera , Humans , Mice , Animals , Cell Line, Tumor , Leukocytes, Mononuclear , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation
2.
Org Biomol Chem ; 19(31): 6883-6891, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34324620

ABSTRACT

A new approach for the preparation of (2-amino-3-cyano-4H-chromen-4-yl)phosphonate derivatives is described. The multicomponent reaction of salicylaldehydes, malononitrile and dialkyl phosphites catalyzed by pentamethyldiethylenetriamine (PMDTA) provided the bicyclic derivatives in high yields. The method developed did not require chromatographic separation, since the products could be recovered from the reaction mixture by simple filtration. Our approach made also possible condensation with secondary phosphine oxides, and this reaction has not been previously reported in the literature. The crystal structures of five derivatives were studied by single-crystal XRD analysis. The in vitro cytotoxicity on different cell lines and the antibacterial activity of the (2-amino-4H-chromen-4-yl)phosphonates synthesized were also explored. According to the IC50 values determined, several derivatives showed moderate or promising activity against mouse fibroblast (NIH/3T3) and human promyelocytic leukemia (HL-60) cells. Furthermore, three (2-amino-3-cyano-4H-chromen-4-yl)phosphine oxides were active against selected Gram-positive bacteria.


Subject(s)
Benzopyrans
3.
Org Biomol Chem ; 19(40): 8754-8760, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34581392

ABSTRACT

A new method for the synthesis of 3-oxoisoindolin-1-ylphosphine oxides bearing same or different substituents on the phosphorus atom is described. The one-pot three-component reaction of 2-formylbenzoic acid, primary amines and achiral or P-stereogenic secondary phosphine oxides provided the target compounds under catalyst-free, mild conditions and for short reaction times. The deoxygenation of a 3-oxoisoindolin-1-ylphosphine oxide was also studied, and the phosphine obtained could be converted to a sulphide and to a platinum complex. The crystal structures of a selected phosphine oxide and the corresponding platinum species were investigated by X-ray diffraction analysis. The biological activity, such as in vitro cytotoxicity on different cell lines and antibacterial activity of the 3-oxoisoindolin-1-ylphosphine oxides was also investigated. Based on the IC50 values obtained, several derivatives showed moderate activity against the HL-60 cell line and two compounds containing 3,5-dimethylphenyl groups on the phosphorus atom showed promising activity against Bacillus subtilis bacteria.


Subject(s)
Phosphines
4.
Molecules ; 25(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517229

ABSTRACT

Novel 1,2,3-triazol-5-yl-phosphonates were prepared by the copper(I)-catalyzed domino reaction of phenylacetylene, organic azides and dialkyl phosphites. The process was optimized on the synthesis of the dibutyl (1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)phosphonate in respect of the catalyst, the base and the solvent, as well as of the reaction parameters (molar ratio of the starting materials, atmosphere, temperature and reaction time). The method elaborated could be applied to a range of organic azides and dialkyl phosphites, which confirmed the large scope and the functional group tolerance. The in vitro cytotoxicity on different cell lines and the antibacterial activity of the synthesized 1,2,3-triazol-5-yl-phosphonates was explored. According to the IC50 values determined, only modest antibacterial effect was detected, while some derivatives showed moderate activity against human promyelocytic leukemia HL-60 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Neoplasms/drug therapy , Organophosphonates/chemistry , Triazoles/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Humans , Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881770

ABSTRACT

The treatment of metastatic breast cancer remained a challenge despite the recent breakthrough in the immunotherapy regimens. Here, we addressed the multidimensional immunophenotyping of 4T1 metastatic breast cancer by the state-of-the-art single cell mass cytometry (CyTOF). We determined the dose and time dependent cytotoxicity of cisplatin on 4T1 cells by the xCelligence real-time electronic sensing assay. Cisplatin treatment reduced tumor growth, number of lung metastasis, and the splenomegaly of 4T1 tumor bearing mice. We showed that cisplatin inhibited the tumor stroma formation, the polarization of carcinoma-associated fibroblasts by the diminished proteolytic activity of fibroblast activating protein. The CyTOF analysis revealed the emergence of CD11b+/Gr-1+/CD44+ or CD11b+/Gr-1+/IL-17A+ myeloid-derived suppressor cells (MDSCs) and the absence of B220+ or CD62L+ B-cells, the CD62L+/CD4+ and CD62L+/CD8+ T-cells in the spleen of advanced cancer. We could show the immunomodulatory effect of cisplatin via the suppression of splenic MDSCs and via the promotion of peripheral IFN-γ+ myeloid cells. Our data could support the use of low dose chemotherapy with cisplatin as an immunomodulatory agent for metastatic triple negative breast cancer.


Subject(s)
Cisplatin/pharmacology , Down-Regulation/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Neoplastic Cells, Circulating/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/therapeutic use , Endopeptidases , Female , Gelatinases/metabolism , Humans , Hyaluronan Receptors/metabolism , Immunophenotyping , Interferon-gamma/metabolism , Interleukin-17/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells/cytology , Serine Endopeptidases/metabolism , Transplantation, Heterologous
6.
Molecules ; 24(23)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771153

ABSTRACT

Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer's disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.


Subject(s)
Hydroxyquinolines/chemical synthesis , Hydroxyquinolines/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Oxyquinoline/analogs & derivatives , Cell Line, Tumor , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Hydroxyquinolines/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Protein Stability/drug effects , Quinidine/chemistry , Quinine/chemistry , Stereoisomerism
7.
Molecules ; 24(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010141

ABSTRACT

The incidence of inflammatory bowel disease (IBD) increases gradually in Western countries with high need for novel therapeutic interventions. Mannich curcuminoids, C142 or C150 synthetized in our laboratory, have been tested for anti-inflammatory activity in a rat model of TNBS (2,4,6-trinitrobenzenesulphonic acid) induced colitis. Treatment with C142 or C150 reduced leukocyte infiltration to the submucosa and muscular propria of the inflamed gut. C142 or C150 rescued the loss of body weight and C150 decreased the weight of standard colon preparations proportional with 20% less tissue oedema. Both C142 and C150 curcumin analogues caused 25% decrease in the severity of colonic inflammation and haemorrhagic lesion size. Colonic MPO (myeloperoxidase) enzyme activity as an indicator of intense neutrophil infiltration was 50% decreased either by C142 or C150 Mannich curcuminoids. Lipopolysaccharide (LPS) co-treatment with Mannich curcuminoids inhibited NF-κB (nuclear factor kappa B) activity on a concentration-dependent manner in an NF-κB-driven luciferase expressing reporter cell line. Co-treatment with LPS and curcuminoids, C142 or C150, resulted in NF-κB inhibition with 3.57 µM or 1.6 µM half maximal effective concentration (EC50) values, respectively. C150 exerted a profound inhibition of the expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-4 (IL-4) in human PBMCs (peripheral blood mononuclear cells) upon LPS stimulus. Mannich curcuminoids reported herein possess a powerful anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Colitis/metabolism , Curcumin/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Animals , Curcumin/analogs & derivatives , Humans , Interleukin-4/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , NF-kappa B/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
8.
Arch Pharm (Weinheim) ; 351(7): e1800062, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29888449

ABSTRACT

The synthesis and in vitro cytotoxic characteristics of new imidazo[1,2-b]pyrazole-7-carboxamides were investigated. Following a hit-to-lead optimization exploiting 2D and 3D cultures of MCF-7 human breast, 4T1 mammary gland, and HL-60 human promyelocytic leukemia cancer cell lines, a 67-membered library was constructed and the structure-activity relationship (SAR) was determined. Seven synthesized analogues exhibited sub-micromolar activities, from which compound 63 exerted the most significant potency with a remarkable HL-60 sensitivity (IC50 = 0.183 µM).


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Pyrazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Female , HL-60 Cells , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Leukemia, Promyelocytic, Acute/pathology , MCF-7 Cells , Mice , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
9.
Molecules ; 23(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072653

ABSTRACT

The 8-hydroxyquinoline pharmacophore scaffold has been shown to possess a range of activities as metal chelation, enzyme inhibition, cytotoxicity, and cytoprotection. Based on our previous findings we set out to optimize the scaffold for cytoprotective activity for its potential application in central nervous system related diseases. A 48-membered Betti-library was constructed by the utilization of formic acid mediated industrial-compatible coupling with sets of aromatic primary amines such as anilines, oxazoles, pyridines, and pyrimidines, with (hetero)aromatic aldehydes and 8-hydroxiquinoline derivatives. After column chromatography and re-crystallization, the corresponding analogues were obtained in yields of 13⁻90%. The synthesized analogs were optimized with the utilization of a cytoprotection assay with chemically induced oxidative stress, and the most active compounds were further tested in orthogonal assays, a real time cell viability method, a fluorescence-activated cell sorting (FACS)-based assay measuring mitochondrial membrane potential changes, and gene expression analysis. The best candidates showed potent, nanomolar activity in all test systems and support the need for future studies in animal models of central nervous system (CNS) disorders.


Subject(s)
Cytoprotection/drug effects , Oxyquinoline/chemical synthesis , Oxyquinoline/pharmacology , Aldehydes/chemistry , Aniline Compounds/chemistry , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Hypoxia/genetics , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Oxyquinoline/chemistry , Structure-Activity Relationship
10.
Molecules ; 23(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30388846

ABSTRACT

Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-b]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-b]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential. Optimization through structure activity relationship resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 nM, and 32.25 nM on HL-60, MOLT-4, MV-4-11 cells, respectively. Human primary fibroblasts were much less sensitive in the applied concentration range. Both monolayer or spheroid cultures of murine 4T1 and human MCF7 breast cancer cells were less sensitive to treatment with 1.5⁻10.8 µM IC50 values. Flow cytometry confirmed the absence of necrosis and revealed 60% late apoptotic population for MV-4-11, and 50% early apoptotic population for HL-60. MOLT-4 cells showed only about 30% of total apoptotic population. Toxicogenomic study of DU385 on the most sensitive MV-4-11 cells revealed altered expression of sixteen genes as early (6 h), midterm (12 h), and late response (24 h) genes upon treatment. Changes in ALOX5AP, TXN, and SOD1 expression suggested that DU385 causes oxidative stress, which was confirmed by depletion of cellular glutathione and mitochondrial membrane depolarization induction. Imidazo[1,2-b]pyrazole-7-carboxamides reported herein induced apoptosis in human leukemia cells at nanomolar concentrations.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Evolution, Molecular , HL-60 Cells , Humans , Oxidative Stress/drug effects , Pyrazoles/chemical synthesis
11.
Arch Pharm (Weinheim) ; 350(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28547897

ABSTRACT

A series of novel curcuminoids were synthesised for the first time via a Mannich-3CR/organocatalysed Claisen-Schmidt condensation sequence. Structure-activity relationship (SAR) studies were performed by applying viability assays and holographic microscopic imaging to these curcumin analogues for anti-proliferative activity against A549 and H1975 lung adenocarcinoma cells. The TNFα-induced NF-κB inhibition and autophagy induction effects correlated strongly with the cytotoxic potential of the analogues. Significant inhibition of tumour growth was observed when the most potent analogue 44 was added in liposomes at one-sixth of the maximally tolerated dose in the A549 xenograft model. The novel spectrum of activity of these Mannich curcuminoids warrants further preclinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/pharmacology , Mannich Bases/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/analogs & derivatives , Curcumin/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mannich Bases/chemistry , Mice , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Structure-Activity Relationship
12.
Int J Mol Sci ; 18(10)2017 Oct 07.
Article in English | MEDLINE | ID: mdl-28991167

ABSTRACT

Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.


Subject(s)
Mitochondrial Membranes/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Curcumin/analogs & derivatives , Curcumin/pharmacology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hep G2 Cells , Humans , Mitochondrial Membranes/drug effects , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Unfolded Protein Response/drug effects , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
13.
Biochim Biophys Acta ; 1851(9): 1271-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26092623

ABSTRACT

Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.


Subject(s)
Gene Expression Regulation, Neoplastic , Lipid Droplets/drug effects , Lipid Metabolism/drug effects , Neuroglia/drug effects , Radiation-Sensitizing Agents/pharmacology , gamma-Linolenic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Arachidonic Acid/metabolism , Cell Line, Tumor , Cholesterol Esters/metabolism , Delta-5 Fatty Acid Desaturase , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Gamma Rays , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Lipid Droplets/radiation effects , Lipid Metabolism/radiation effects , Neuroglia/metabolism , Neuroglia/pathology , Neuroglia/radiation effects , Radiation-Sensitizing Agents/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism , gamma-Linolenic Acid/metabolism
14.
Proc Natl Acad Sci U S A ; 110(10): 4045-50, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431148

ABSTRACT

Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.


Subject(s)
MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/physiology , Retinal Ganglion Cells/enzymology , Retinal Ganglion Cells/pathology , Animals , Cell Death/genetics , Cell Death/physiology , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Down-Regulation , Glaucoma/drug therapy , Glaucoma/etiology , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Male , Mice , Optic Nerve Diseases/etiology , Optic Nerve Diseases/pathology , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/enzymology , Optic Nerve Injuries/pathology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , RNA Interference , Rats , Rats, Wistar , Retinal Ganglion Cells/drug effects , Signal Transduction , Up-Regulation
15.
Lipids Health Dis ; 13: 142, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25182732

ABSTRACT

BACKGROUND: Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. METHODS: We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. RESULTS: Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. CONCLUSIONS: Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects.


Subject(s)
Antineoplastic Agents/pharmacology , Fatty Acids, Unsaturated/pharmacology , Cell Line, Tumor , Cell Proliferation , Cell Shape/drug effects , Cell Shape/radiation effects , Drug Screening Assays, Antitumor , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioma , Humans , L-Lactate Dehydrogenase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome/drug effects , Transcriptome/radiation effects
16.
J Cell Sci ; 124(Pt 4): 523-31, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21266465

ABSTRACT

Phagocytosis of the shed outer segment discs of photoreceptors is a major function of the retinal pigmented epithelium (RPE). We demonstrate for the first time that ßA3/A1-crystallin, a major structural protein of the ocular lens, is expressed in RPE cells. Further, by utilizing the Nuc1 rat, in which the ßA3/A1-crystallin gene is mutated, we show that this protein is required by RPE cells for proper degradation of outer segment discs that have been internalized in phagosomes. We also demonstrate that in wild-type RPE, ßA3/A1-crystallin is localized to the lysosomes. However, in the Nuc1 RPE, ßA3/A1-crystallin fails to translocate to the lysosomes, perhaps because misfolding of the mutant protein masks sorting signals required for proper trafficking. The digestion of phagocytized outer segments requires a high level of lysosomal enzyme activity, and cathepsin D, the major enzyme responsible for proteolysis of the outer segments, is decreased in mutant RPE cells. Interestingly, our results also indicate a defect in the autophagy process in the Nuc1 RPE, which is probably also linked to impaired lysosomal function, because phagocytosis and autophagy might share common mechanisms in degradation of their targets. ßA3/A1-crystallin is a novel lysosomal protein in RPE, essential for degradation of phagocytosed material.


Subject(s)
Crystallins/genetics , Mutation , Phagosomes/genetics , Retinal Pigment Epithelium/metabolism , Animals , Crystallins/metabolism , Phagosomes/metabolism , Phagosomes/ultrastructure , Rats , Rats, Sprague-Dawley , Retinal Pigment Epithelium/ultrastructure
17.
Lipids Health Dis ; 12: 175, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24268070

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options. RESULTS: In this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size. CONCLUSION: These results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Endoplasmic Reticulum Stress/drug effects , Liver Neoplasms/drug therapy , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chaperonin 60/genetics , Chaperonin 60/metabolism , Diethylnitrosamine , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Female , Gene Expression , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Lipids/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Transgenic , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Thalidomide/pharmacokinetics , Tumor Burden/drug effects
18.
Nucleic Acids Res ; 39(18): 7920-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21724604

ABSTRACT

Alternative processing of pre-mRNA plays an important role in protein diversity and biological function. Previous studies on alternative splicing (AS) often focused on the spatial patterns of protein isoforms across different tissues. Here we studied dynamic usage of AS across time, during murine retina development. Over 7000 exons showed dynamical changes in splicing, with differential splicing events occurring more frequently in early development. The overall splicing patterns for exclusive and inclusive exons show symmetric trends and genes with symmetric splicing patterns that tend to have similar biological functions. Furthermore, we observed that within the retina, retina-enriched genes that are preferentially expressed at the adult stage tend to have more dynamically spliced exons compared to other genes, suggesting that genes maintaining retina homeostasis also play an important role in development via a series of AS events. Interestingly, the transcriptomes of retina-enriched genes largely reflect the retinal developmental process. Finally, we identified a number of candidate cis-regulatory elements for retinal AS by analyzing the relative occurrence of sequence motifs in exons or flanking introns. The occurrence of predicted regulatory elements showed strong correlation with the expression level of known RNA binding proteins, suggesting the high quality of the identified cis-regulatory elements.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Developmental , Retina/embryology , Retina/growth & development , Animals , Exons , Gene Expression Profiling , Mice , Regulatory Sequences, Ribonucleic Acid , Retina/metabolism
19.
ACS Omega ; 8(2): 2698-2711, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687078

ABSTRACT

A fast, mild, and efficient catalyst-free approach has been developed for the synthesis of chromonyl-substituted α-aminophosphine oxides by the three-component reaction of 3-formyl-6-methylchromone, primary amines, and secondary phosphine oxides at ambient temperature. Carrying out the reaction with aliphatic amines or aminoalcohols at a higher temperature (80 °C), phosphinoyl-functionalized 3-aminomethylene chromanones were formed instead of the corresponding chromonyl-substituted α-aminophosphine oxides. No reaction occurred when 3-formyl-6-methylchromone and secondary phosphine oxides were reacted with aromatic amines in the absence of any catalyst. Applying a basic catalyst, the formation of the phosphinoyl-functionalized 3-aminomethylene chromanones was observed; however, the reaction was not complete. Detailed experimental and quantum chemical studies were performed to study the transformation. Moreover, the in vitro cytotoxicity of phosphinoyl-functionalized 3-aminomethylene chromanones was also investigated in three different cell lines, such as human lung adenocarcinoma (A549), mouse fibroblast (NIH/3T3), and human promyelocytic leukemia (HL60) cells. Several derivatives showed modest activity against the human promyelocytic leukemia (HL60) cell line.

20.
Front Med (Lausanne) ; 10: 1176168, 2023.
Article in English | MEDLINE | ID: mdl-37529238

ABSTRACT

Background: Vaccination has proven the potential to control the COVID-19 pandemic worldwide. Although recent evidence suggests a poor humoral response against SARS-CoV-2 in vaccinated hematological disease (HD) patients, data on vaccination in these patients is limited with the comparison of mRNA-based, vector-based or inactivated virus-based vaccines. Methods: Forty-nine HD patients and 46 healthy controls (HCs) were enrolled who received two-doses complete vaccination with BNT162b2, or AZD1222, or BBIBP-CorV, respectively. The antibodies reactive to the receptor binding domain of spike protein of SARS-CoV-2 were assayed by Siemens ADVIA Centaur assay. The reactive cellular immunity was assayed by flow cytometry. The PBMCs were reactivated with SARS-CoV-2 antigens and the production of activation-induced markers (TNF-α, IFN-γ, CD40L) was measured in CD4+ or CD8+ T-cells ex vivo. Results: The anti-RBD IgG level was the highest upon BNT162b2 vaccination in HDs (1264 BAU/mL) vs. HCs (1325 BAU/mL) among the studied groups. The BBIBP-CorV vaccination in HDs (339.8 BAU/mL ***p < 0.001) and AZD1222 in HDs (669.9 BAU/mL *p < 0.05) resulted in weaker antibody response vs. BNT162b2 in HCs. The response rate of IgG production of HC vs. HD patients above the diagnostic cut-off value was 100% vs. 72% for the mRNA-based BNT162b2 vaccine; 93% vs. 56% for the vector-based AZD1222, or 69% vs. 33% for the inactivated vaccine BBIBP-CorV, respectively. Cases that underwent the anti-CD20 therapy resulted in significantly weaker (**p < 0.01) anti-RBD IgG level (302 BAU/mL) than without CD20 blocking in the HD group (928 BAU/mL). The response rates of CD4+ TNF-α+, CD4+ IFN-γ+, or CD4+ CD40L+ cases were lower in HDs vs. HCs in all vaccine groups. However, the BBIBP-CorV vaccine resulted the highest CD4+ TNF-α and CD4+ IFN-γ+ T-cell mediated immunity in the HD group. Conclusion: We have demonstrated a significant weaker overall response to vaccines in the immunologically impaired HD population vs. HCs regardless of vaccine type. Although, the humoral immune activity against SARS-CoV-2 can be highly evoked by mRNA-based BNT162b2 vaccination compared to vector-based AZD1222 vaccine, or inactivated virus vaccine BBIBP-CorV, whereas the CD4+ T-cell mediated cellular activity was highest in HDs vaccinated with BBIBP-CorV.

SELECTION OF CITATIONS
SEARCH DETAIL