Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15301-15315, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38771267

ABSTRACT

Uranium isotope fractionation has been extensively investigated in the fields of nuclear engineering and geochemical studies, yet the underlying mechanisms remain unclear. This study assessed isotope fractionations in U(VI)-U(VI) and U(IV)-U(VI) systems by employing various relativistic electron correlation methods to explore the effect of electron correlation and to realize accurate calculations of isotope fractionation coefficients (ε). The nuclear volume term, ln Knv, the major term in ε, was estimated using the exact two-component relativistic Hamiltonian in conjunction with either HF, DFT(B3LYP), MP2, CCSD, CCSD(T), FSCCSD, CASPT2, or RASPT2 approaches for small molecular models with high symmetry. In contrast, chemical species studied in prior experimental work had moderate sizes and were asymmetrical. In such cases, electron correlation calculations other than DFT calculations were not possible and so only the HF and B3LYP approaches were employed. For closed-shell U(VI)-U(VI) systems, the MP2, CCSD and CCSD(T) methods yielded similar ln Knv values that were intermediate between those for the HF and B3LYP methods. Comparisons with experimental results for U(VI)-U(VI) systems showed that the B3LYP calculations gave results closer to the experimental data than the HF calculations. Because of the open-shell structure of U(IV), multireference methods involving the FSCCSD, CASPT2 and RASPT2 techniques were used for U(IV)-U(VI) systems, but these calculations exhibited instability. The average-of-configuration HF method showed better agreement with the experimental ε values for U(IV)-U(VI) systems than the B3LYP method. Overall, electron correlation improved the description of ε for the U(VI)-U(VI) systems but challenges remain with regard to open-shell U(IV) calculations because an energy accuracy of 10-6-10-7Eh is required for ln Knv calculations.

2.
J Inorg Biochem ; 255: 112544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574491

ABSTRACT

Resonance Raman (rR) spectroscopy has been applied to study the nature of the iron-oxo (Fe=O) moiety of oxoiron(IV) porphyrin π-cation radical complex (CompI). While the axial ligand effect on the nature of the Fe=O moiety has been studied with rR spectroscopy, the porphyrin ligand effect has not been studied well. Here, we investigated the porphyrin ligand effect on the Fe=O moiety with rR spectroscopy. The porphyrin ligand effect was modulated by the electron-withdrawing effect of the porphyrin substituent at the meso-position. This study shows that the frequency of the Fe=O stretching band, ν(Fe=O), hardly change even when the electron-withdrawing effect of the porphyrin substituent changes. This result is further supported by theoretical calculation of CompI. The natural atomic charge analysis reveals that the oxo and axial ligands work to buffer the electron-withdrawing effect of the porphyrin substituent. The electron-withdrawing porphyrin substituent shifts an electron population from the ferryl iron to the porphyrin, but the decreased electron population on the ferryl iron is compensated by the shift of the electron population from the oxo ligand and the axial ligand. The shift of the electron population makes the Fe-axial ligand bond length short, but the Fe=O bond length unchanged, resulting in the invariable ν(Fe=O) frequency.


Subject(s)
Porphyrins , Ligands , Porphyrins/chemistry , Iron/chemistry , Cations
SELECTION OF CITATIONS
SEARCH DETAIL