Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ISME J ; 6(6): 1186-99, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22170421

ABSTRACT

Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25-1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition.


Subject(s)
Gammaproteobacteria/classification , Metagenomics , Phylogeny , Seawater/microbiology , Computational Biology , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Genome, Bacterial , Genomic Library , Oceans and Seas , Plankton/genetics , RNA, Ribosomal, 16S/genetics , Rhodopsin , Rhodopsins, Microbial
2.
J Bacteriol ; 187(18): 6488-98, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16159782

ABSTRACT

Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.


Subject(s)
Genes, Bacterial , Genome, Bacterial , Pseudomonas syringae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Pseudomonas syringae/classification , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Species Specificity , Virulence
3.
Proc Natl Acad Sci U S A ; 101(15): 5646-51, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15064399

ABSTRACT

We present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque. Comparisons with previously sequenced spirochete genomes revealed specific factors contributing to differences and similarities in spirochete physiology as well as pathogenic potential. The T. denticola genome is considerably larger in size than the genome of the related syphilis-causing spirochete Treponema pallidum. The differences in gene content appear to be attributable to a combination of three phenomena: genome reduction, lineage-specific expansions, and horizontal gene transfer. Genes lost due to reductive evolution appear to be largely involved in metabolism and transport, whereas some of the genes that have arisen due to lineage-specific expansions are implicated in various pathogenic interactions, and genes acquired via horizontal gene transfer are largely phage-related or of unknown function.


Subject(s)
Genome, Bacterial , Mouth/microbiology , Treponema/genetics , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Base Sequence , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Genes, Bacterial/genetics , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , Models, Genetic , Molecular Sequence Data , Sequence Homology, Amino Acid , Treponema/metabolism , Treponema/pathogenicity , Treponema pallidum/genetics , Treponema pallidum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL