ABSTRACT
AIMS/HYPOTHESIS: Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes. METHODS: As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively. RESULTS: In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabolite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.
ABSTRACT
High uncoupling protein 1 (Ucp1) expression is a characteristic of differentiated brown adipocytes and is linked to adipogenic differentiation. Paracrine fibroblast growth factor 8b (FGF8b) strongly induces Ucp1 transcription in white adipocytes independent of adipogenesis. Here, we report that FGF8b and other paracrine FGFs act on brown and white preadipocytes to upregulate Ucp1 expression via a FGFR1-MEK1/2-ERK1/2 axis, independent of adipogenesis. Transcriptomic analysis revealed an upregulation of prostaglandin biosynthesis and glycolysis upon Fgf8b treatment of preadipocytes. Oxylipin measurement by LC-MS/MS in FGF8b conditioned media identified prostaglandin E2 as a putative mediator of FGF8b induced Ucp1 transcription. RNA interference and pharmacological inhibition of the prostaglandin E2 biosynthetic pathway confirmed that PGE2 is causally involved in the control over Ucp1 transcription. Importantly, impairment of or failure to induce glycolytic flux blunted the induction of Ucp1, even in the presence of PGE2 . Lastly, a screening of transcription factors identified Nrf1 and Hes1 as required regulators of FGF8b induced Ucp1 expression. Thus, we conclude that paracrine FGFs co-regulate prostaglandin and glucose metabolism to induce Ucp1 expression in a Nrf1/Hes1-dependent manner in preadipocytes, revealing a novel regulatory network in control of Ucp1 expression in a formerly unrecognized cell type.
Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Dinoprostone/metabolism , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation , Glycolysis , Uncoupling Protein 1/physiology , Adipocytes, Brown/cytology , Adipocytes, White/cytology , Adipogenesis , Animals , Cells, Cultured , Fibroblast Growth Factor 8/genetics , Male , Mice , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
BACKGROUND: Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE: This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS: Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS: This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS: Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Asthma/immunology , Macrophages/immunology , Nasal Polyps/immunology , Anti-Inflammatory Agents, Non-Steroidal/immunology , Asthma/chemically induced , Humans , Immunologic Memory/immunology , Macrophage Activation/immunology , Macrophages/metabolism , Nasal Polyps/chemically inducedABSTRACT
Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.
Subject(s)
Laboratories , Lipidomics , Cohort Studies , Humans , Reference Standards , Spectrum AnalysisABSTRACT
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.
Subject(s)
Fatty Liver/etiology , Machine Learning , Diabetes Complications/etiology , Female , Humans , Male , Middle Aged , Models, Statistical , Prospective Studies , Reproducibility of Results , Risk AssessmentABSTRACT
BACKGROUND: Eicosanoid lipid mediators play key roles in type 2 immune responses, for example in allergy and asthma. Macrophages represent major producers of eicosanoids and they are key effector cells of type 2 immunity. We aimed to comprehensively track eicosanoid profiles during type 2 immune responses to house dust mite (HDM) or helminth infection and to identify mechanisms and functions of eicosanoid reprogramming in human macrophages. METHODS: We established an LC-MS/MS workflow for the quantification of 52 oxylipins to analyze mediator profiles in human monocyte-derived macrophages (MDM) stimulated with HDM and during allergic airway inflammation (AAI) or nematode infection in mice. Expression of eicosanoid enzymes was studied by qPCR and western blot and cytokine production was assessed by multiplex assays. RESULTS: Short (24 h) exposure of alveolar-like MDM (aMDM) to HDM suppressed 5-LOX expression and product formation, while triggering prostanoid (thromboxane and prostaglandin D2 and E2 ) production. This eicosanoid reprogramming was p38-dependent, but dectin-2-independent. HDM also induced proinflammatory cytokine production, but reduced granulocyte recruitment by aMDM. In contrast, high levels of cysteinyl leukotrienes (cysLTs) and 12-/15-LOX metabolites were produced in the airways during AAI or nematode infection in mice. CONCLUSION: Our findings show that a short exposure to allergens as well as ongoing type 2 immune responses are characterized by a fundamental reprogramming of the lipid mediator metabolism with macrophages representing particularly plastic responder cells. Targeting mediator reprogramming in airway macrophages may represent a viable approach to prevent pathogenic lipid mediator profiles in allergy or asthma.
Subject(s)
Asthma/immunology , Eicosanoids/metabolism , Macrophages/immunology , Pyroglyphidae/immunology , Strongylida Infections/immunology , Animals , Asthma/parasitology , Bronchoalveolar Lavage Fluid/parasitology , Cells, Cultured , Chromatography, Liquid , Cytokines/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Nippostrongylus/immunology , Real-Time Polymerase Chain Reaction , Strongylida Infections/parasitology , Tandem Mass SpectrometryABSTRACT
Prolonged storage of biospecimen can lead to artificially altered metabolite concentrations and thus bias data analysis in metabolomics experiments. To elucidate the potential impact of long-term storage on the metabolite profile, a pooled human plasma sample was aliquoted and stored at -80 °C. During a time period of five years, 1012 of the aliquots were measured with the Biocrates AbsoluteIDQ p180 targeted-metabolomics assay at 193 time points. Modeling the concentration courses over time revealed that 55 out of 111 metabolites remained stable. The statistically significantly changed metabolites showed on average an increase or decrease of +13.7% or -14.5%, respectively. In detail, increased concentration levels were observed for amino acids (mean: + 15.4%), the sum of hexoses (+7.9%), butyrylcarnitine (+9.4%), and some phospholipids mostly with chain lengths exceeding 40 carbon atoms (mean: +18.0%). Lipids tended to exhibit decreased concentration levels with the following mean concentration changes: acylcarnitines, -12.1%; lysophosphatidylcholines, -15.1%; diacyl-phosphatidylcholines, -17.0%; acyl-alkyl-phosphatidylcholines, -13.3%; sphingomyelins, -14.8%. We conclude that storage of plasma samples at -80 °C for up to five years can lead to altered concentration levels of amino acids, acylcarnitines, glycerophospholipids, sphingomyelins, and the sum of hexoses. These alterations must be considered when analyzing metabolomics data from long-term epidemiological studies.
Subject(s)
Cryopreservation/standards , Longitudinal Studies , Plasma/metabolism , Amino Acids/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Hexoses/metabolism , Humans , Metabolomics , Phospholipids/metabolismABSTRACT
AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case-control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10-7). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10-3) and prevalent type 2 diabetes (ORVal_PC ae C32:2 2.64 [ß 0.97 ± 0.09], p = 1.0 × 10-27). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HRVal_PC ae C32:2 1.57 [ß 0.45 ± 0.06]; p = 1.3 × 10-15), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors.
Subject(s)
Biomarkers/blood , Biomarkers/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Arginine/metabolism , Blood Glucose/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Glucose Tolerance Test , Humans , Insulin/metabolism , Male , Risk FactorsABSTRACT
BACKGROUND AND AIMS: Endothelial dysfunction (ED) is considered to be a major driver of the increased incidence of cardiovascular disease in primary aldosteronism (PA). The functionality of the epoxyeicosatrienoic acid (EET) pathway, involving the release of beneficial endothelium-derived lipid mediators, in PA is unknown. Evidence suggests this pathway to be disturbed in various models of experimental hypertension. We therefore assessed EET production in primary human coronary artery endothelial cells exposed to aldosterone excess and measured circulating EET in patients with PA. METHODS: We used qPCR to investigate changes in the expression levels of essential genes for the synthesis and degradation of EET, calcium imaging to address the functional impact on overall endothelial function, as well as mass spectrometry to determine endothelial synthetic capacity to release EET upon stimulation. RNA-seq was performed to gain further mechanistic insights. Eicosanoid concentrations in patient's plasma were also determined by mass spectrometry. RESULTS: Aldosterone, while eliciting proinflammatory VCAM1 expression and disturbed calcium response to acetylcholine, did not negatively affect stimulated release of endothelial EET. Likewise, no differences were observed in eicosanoid concentrations in plasma from patients with PA when compared to essential hypertensive controls. However, an inhibitor of soluble epoxide hydrolase abrogated aldosterone-mediated VCAM1 induction and led to a normalized endothelial calcium response probably by restoring expression of CHRNE. CONCLUSION: EET release appears intact despite aldosterone excess. Epoxide hydrolase inhibition may revert aldosterone-induced functional changes in endothelial cells. These findings indicate a potential new therapeutic principle to address ED, which should be explored in future preclinical and clinical trials.
ABSTRACT
Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.
Subject(s)
Arachidonate 15-Lipoxygenase , Lung , Animals , Lung/pathology , Lung/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Proteomics , Lipidomics , Swine , Diabetes Complications/pathology , Diabetes Complications/metabolism , Diabetes Mellitus/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Sus scrofa , MultiomicsABSTRACT
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Subject(s)
Ceramides , Laboratories , Reference Standards , Humans , Ceramides/blood , Calibration , Laboratories/standards , Mass Spectrometry/methods , Lipidomics/methods , Reproducibility of ResultsABSTRACT
CONTEXT: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.
Subject(s)
Diabetes Mellitus, Type 2 , Diet , Glucagon-Like Peptide 1 , Life Style , Prediabetic State , Humans , Male , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Cross-Sectional Studies , Middle Aged , Prediabetic State/blood , Prediabetic State/metabolism , Aged , Adult , Insulin Resistance , Fasting/blood , Obesity/blood , Obesity/metabolism , Cohort Studies , Blood Glucose/metabolism , Blood Glucose/analysis , Adiposity/physiologyABSTRACT
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Subject(s)
Macrophages, Alveolar , Receptors, Aryl Hydrocarbon , Humans , Chromatography, Liquid , Dinoprostone , Eicosanoids/metabolism , Inflammation/metabolism , Leukotrienes , Macrophages, Alveolar/metabolism , Prostaglandins , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Tandem Mass SpectrometryABSTRACT
OBJECTIVE: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs. METHODS: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein-protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology. RESULTS: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways - most prominently those from the Kennedy pathway - were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance. CONCLUSIONS: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.
Subject(s)
Diabetes, Gestational , Hyperglycemia , Infant, Newborn , Pregnancy , Female , Animals , Humans , Swine , Adolescent , Glucose/metabolism , Lipid Metabolism , Amino Acids/metabolism , Multiomics , Liver/metabolism , Hyperglycemia/metabolismABSTRACT
[This corrects the article DOI: 10.3389/fimmu.2023.1157373.].
ABSTRACT
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Algorithms , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/geneticsABSTRACT
We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.
Subject(s)
Genomics , Multifactorial Inheritance , Humans , Phenotype , RNA, Messenger , Research PersonnelABSTRACT
Aberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity. Specifically, the lipid-droplet-coating protein perilipin 2 (Plin2) is required for multipolar spindle formation, induction of DNA damage, and mitotic cell death. Plin2 expression in different tumor cells confers susceptibility to cell death induced by Trip13 depletion as well as treatment with paclitaxel, a spindle-interfering drug commonly used against different cancers. Thus, assessment of Plin2 levels enables the stratification of tumor responsiveness to mitosis-targeting drugs, including clinically approved paclitaxel and Trip13 inhibitors currently under development.
Subject(s)
Insulins , Liver Neoplasms , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism , Cell Death , Humans , Insulins/metabolism , Lipids , Mad2 Proteins/metabolism , Paclitaxel/pharmacology , Perilipin-2 , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Thyroid Hormone/metabolismABSTRACT
The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.
Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Adult , Diabetes Mellitus, Type 2/genetics , Disease Progression , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genomics , Humans , Male , Middle Aged , Phenotype , Risk FactorsABSTRACT
Post-translational modifications have major importance for the structure and function of a multiplicity of proteins. Phosphorylation is a widespread phenomenon among eukaryotic proteins. Whereas O-phosphorylation on the side chains of serine, threonine, and tyrosine in proteins is well known and has been studied extensively, to our knowledge the endogenous phosphorylation of hydroxyproline has not previously been reported. In the present work, we provide evidence for the first time that O-phosphohydroxyproline (Hyp(P)) is a proteinogenic amino acid. To detect Hyp(P) in proteins we generated a Hyp(P)-specific polyclonal antibody. We could identify Hyp(P) in various proteins by Western blot analysis, and we characterized the sequence position of Hyp(P) in the protein α-crystallin A by electrospray ionization-tandem mass spectrometry. Our experiments clearly demonstrate hydroxylation and subsequent phosphorylation of a proline residue in α-crystallin A in the eye as well as in heart tissue of rat.