Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Blood ; 142(13): 1143-1155, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37294920

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, is characterized by an aggressive clinical course. In approximately one-third of patients with DLBCL, first-line multiagent immunochemotherapy fails to produce a durable response. Molecular heterogeneity and apoptosis resistance pose major therapeutic challenges in DLBCL treatment. To circumvent apoptosis resistance, the induction of ferroptosis might represent a promising strategy for lymphoma therapy. In this study, a compound library, targeting epigenetic modulators, was screened to identify ferroptosis-sensitizing drugs. Strikingly, bromodomain and extra-terminal domain (BET) inhibitors sensitized cells of the germinal center B-cell-like (GCB) subtype of DLBCL to ferroptosis induction and the combination of BET inhibitors with ferroptosis inducers, such as dimethyl fumarate or RSL3, synergized in the killing of DLBCL cells in vitro and in vivo. On the molecular level, the BET protein BRD4 was found to be an essential regulator of ferroptosis suppressor protein 1 expression and thus to protect GCB-DLBCL cells from ferroptosis. Collectively, we identified and characterized BRD4 as an important player in ferroptosis suppression in GCB-DLBCL and provide a rationale for the combination of BET inhibitors with ferroptosis-inducing agents as a novel therapeutic approach for DLBCL treatment.


Subject(s)
Ferroptosis , Lymphoma, Large B-Cell, Diffuse , Humans , Nuclear Proteins/genetics , Transcription Factors/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , B-Lymphocytes/pathology , Cell Cycle Proteins
2.
Blood ; 138(10): 871-884, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33876201

ABSTRACT

Despite the development of novel targeted drugs, the molecular heterogeneity of diffuse large B-cell lymphoma (DLBCL) still poses a substantial therapeutic challenge. DLBCL can be classified into at least 2 major subtypes (germinal center B cell [GCB]-like and activated B cell [ABC]-like DLBCL), each characterized by specific gene expression profiles and mutation patterns. Here we demonstrate a broad antitumor effect of dimethyl fumarate (DMF) on both DLBCL subtypes, which is mediated by the induction of ferroptosis, a form of cell death driven by the peroxidation of phospholipids. As a result of the high expression of arachidonate 5-lipoxygenase in concert with low glutathione and glutathione peroxidase 4 levels, DMF induces lipid peroxidation and thus ferroptosis, particularly in GCB DLBCL. In ABC DLBCL cells, which are addicted to NF-κB and STAT3 survival signaling, DMF treatment efficiently inhibits the activity of the IKK complex and Janus kinases. Interestingly, the BCL-2-specific BH3 mimetic ABT-199 and an inhibitor of ferroptosis suppressor protein 1 synergize with DMF in inducing cell death in DLBCL. Collectively, our findings identify the clinically approved drug DMF as a promising novel therapeutic option in the treatment of both GCB and ABC DLBCLs.


Subject(s)
Dimethyl Fumarate/pharmacology , Ferroptosis/drug effects , Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , NF-kappa B/genetics , Neoplasm Proteins/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Xenograft Model Antitumor Assays , Zebrafish
3.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142688
4.
Blood ; 135(2): 121-132, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31794606

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) represents the most common adult lymphoma and can be divided into 2 major molecular subtypes: the germinal center B-cell-like and the aggressive activated B-cell-like (ABC) DLBCL. Previous studies suggested that chronic B-cell receptor signaling and increased NF-κB activation contribute to ABC DLBCL survival. Here we show that the activity of the transcription factor NFAT is chronically elevated in both DLBCL subtypes. Surprisingly, NFAT activation is independent of B-cell receptor signaling, but mediated by an increased calcium flux and calcineurin-mediated dephosphorylation of NFAT. Intriguingly, although NFAT is activated in both DLBCL subtypes, long-term calcineurin inhibition with cyclosporin A or FK506, both clinically approved drugs, triggers potent cytotoxicity specifically in ABC DLBCL cells. The antitumor effects of calcineurin inhibitors are associated with the reduced expression of c-Jun, interleukin-6, and interleukin-10, which were identified as NFAT target genes that are particularly important for the survival of ABC DLBCL. Furthermore, calcineurin blockade synergized with BCL-2 and MCL-1 inhibitors in killing ABC DLBCL cells. Collectively, these findings identify constitutive NFAT signaling as a crucial functional driver of ABC DLBCL and highlight calcineurin inhibition as a novel strategy for the treatment of this aggressive lymphoma subtype.


Subject(s)
Calcineurin Inhibitors/pharmacology , Calcineurin/chemistry , Calcium/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , NFATC Transcription Factors/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Myeloid Cell Leukemia Sequence 1 Protein/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Cells, Cultured
5.
Haematologica ; 107(2): 427-436, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33440919

ABSTRACT

Graft-versus-host disease (GvHD) is a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. We recently showed in murine studies and in vitro human models that adoptively transferred invariant natural killer T (iNKT) cells protect from GvHD and promote graft-versus-leukemia effects. The cellular mechanisms underlying GvHD prevention by iNKT cells in humans, however, remain unknown. In order to study relevant cellular interactions, dendritic cells (DC) were either generated from monocytes or isolated directly from blood of healthy donors or GvHD patients and co-cultured in a mixed lymphocyte reaction (MLR) with T cells obtained from healthy donors or transplantation bags. Addition of culture-expanded iNKT cells to the MLR-induced DC apoptosis in a cell contact-dependent manner, thereby preventing T-cell activation and proliferation. Annexin V/propidium iodide staining and image stream assays showed that CD4+CD8-, CD4-CD8+ and double negative iNKT cells are similarly able to induce DC apoptosis. Further MLR assays revealed that conventional DC (cDC) but not plasmacytoid DC (pDC) could induce alloreactive T-cell activation and proliferation. Interestingly, cDC were also more susceptible to apoptosis induced by iNKT cells, which correlates with their higher CD1d expression, leading to a bias in favor of pDC. Remarkably, these results could also be observed in GvHD patients. We propose a new mechanism how ex vivo expanded human iNKT cells prevent alloreactivity of T cells. iNKT cells modulate T-cell responses by selective apoptosis of DC subsets, resulting in suppression of T-cell activation and proliferation while enabling beneficial immune responses through pDC.


Subject(s)
Graft vs Host Disease , Natural Killer T-Cells , Animals , Apoptosis , Dendritic Cells , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Lymphocyte Activation , Mice
6.
Biol Chem ; 402(12): 1583-1589, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34192836

ABSTRACT

Psoriasis is a frequent autoimmune-related skin disease, which involves various cell types such as T cells, keratinocytes and dendritic cells. Genetic variations, such as mutations of CARD14, can promote the development of the disease. CARD14 mutations as well as the stimulation of immune and cytokine receptors activate the paracaspase MALT1, a potent activator of the transcription factors NF-κB and AP-1. The disease-promoting role of MALT1 for psoriasis is mediated by both its protease activity as well as its molecular scaffold function. Here, we review the importance of MALT1-mediated signaling and its therapeutic implications in psoriasis.


Subject(s)
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , CARD Signaling Adaptor Proteins , Guanylate Cyclase , Humans , Membrane Proteins , Psoriasis
7.
Proc Natl Acad Sci U S A ; 115(40): 10088-10093, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224457

ABSTRACT

Proinflammatory cytokine signaling in keratinocytes plays a crucial role in the pathogenesis of psoriasis, a skin disease characterized by hyperproliferation and abnormal differentiation of keratinocytes and infiltration of inflammatory cells. Although IL-17A and TNFα are effective therapeutic targets in psoriasis, IL-36 has recently emerged as a proinflammatory cytokine. However, little is known about IL-36 signaling and its downstream transcriptional responses. Here, we found that exposure of keratinocytes to IL-36 induced the expression of IκBζ, an atypical IκB member and a specific transcriptional regulator of selective NF-κB target genes. Induction of IκBζ by IL-36 was mediated by NF-κB and STAT3. In agreement, IL-36-mediated induction of IκBζ was found to be required for the expression of various psoriasis-related genes involved in inflammatory signaling, neutrophil chemotaxis, and leukocyte activation. Importantly, IκBζ-knockout mice were protected against IL-36-mediated dermatitis, accompanied by reduced proinflammatory gene expression, decreased immune cell infiltration, and a lack of keratinocyte hyperproliferation. Moreover, expression of IκBζ mRNA was highly up-regulated in biopsies of psoriasis patients where it coincided with IL36G levels. Thus our results uncover an important role for IκBζ in IL-36 signaling and validate IκBζ as an attractive target for psoriasis therapy.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation , Gene Expression Regulation , Interleukin-1/metabolism , Nuclear Proteins/metabolism , Psoriasis/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Humans , Interleukin-1/genetics , Interleukin-1/immunology , Keratinocytes/immunology , Keratinocytes/pathology , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Psoriasis/genetics , Psoriasis/immunology , Psoriasis/pathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism
8.
Nat Immunol ; 9(3): 272-81, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18264101

ABSTRACT

The paracaspase MALT1 is pivotal in antigen receptor-mediated lymphocyte activation and lymphomagenesis. MALT1 contains a caspase-like domain, but it is unknown whether this domain is proteolytically active. Here we report that MALT1 had arginine-directed proteolytic activity that was activated after T cell stimulation, and we identify the signaling protein Bcl-10 as a MALT1 substrate. Processing of Bcl-10 after Arg228 was required for T cell receptor-induced cell adhesion to fibronectin. In contrast, MALT1 activity but not Bcl-10 cleavage was essential for optimal activation of transcription factor NF-kappaB and production of interleukin 2. Thus, the proteolytic activity of MALT1 is central to T cell activation, which suggests a possible target for the development of immunomodulatory or anticancer drugs.


Subject(s)
Caspases/physiology , Lymphocyte Activation/immunology , NF-kappa B/metabolism , Neoplasm Proteins/physiology , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/metabolism , B-Cell CLL-Lymphoma 10 Protein , Cell Line , Electrophoresis, Gel, Two-Dimensional , Humans , Jurkat Cells , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Peptide Hydrolases/metabolism , Protein Isoforms/metabolism
9.
Blood ; 127(14): 1780-9, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26747248

ABSTRACT

A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Gene Expression Regulation, Neoplastic , Guanylate Cyclase/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Myeloid Differentiation Factor 88/metabolism , Transcription Factor AP-1/metabolism , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factors/genetics , Activating Transcription Factors/metabolism , CARD Signaling Adaptor Proteins/genetics , Germinal Center/metabolism , Germinal Center/pathology , Guanylate Cyclase/genetics , Humans , Jurkat Cells , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Myeloid Differentiation Factor 88/genetics , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Proc Natl Acad Sci U S A ; 112(43): E5825-33, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460049

ABSTRACT

Psoriasis is a common immune-mediated, chronic, inflammatory skin disease characterized by hyperproliferation and abnormal differentiation of keratinocytes and infiltration of inflammatory cells. Although TNFα- and IL-17A-targeting drugs have recently proven to be highly effective, the molecular mechanism underlying the pathogenesis of psoriasis remains poorly understood. We found that expression of the atypical IκB member IκB (inhibitor of NF-κB) ζ, a selective coactivator of particular NF-κB target genes, was strongly increased in skin of patients with psoriasis. Moreover, in human keratinocytes IκBζ was identified as a direct transcriptional activator of TNFα/IL-17A-inducible psoriasis-associated proteins. Using genetically modified mice, we found that imiquimod-induced psoriasis-like skin inflammation was completely absent in IκBζ-deficient mice, whereas skin inflammation was still inducible in IL-17A- and TNFα-deficient mice. IκBζ deficiency also conferred resistance against IL-23-induced psoriasis. In addition, local abrogation of IκBζ function by intradermal injection of IκBζ siRNA abolished psoriasis-like skin inflammation. Taken together, we identify IκBζ as a hitherto unknown key regulator of IL-17A-driven effects in psoriasis. Thus, targeting IκBζ could be a future strategy for treatment of psoriasis, and other inflammatory diseases for which IL-17 antagonists are currently tested in clinical trials.


Subject(s)
I-kappa B Proteins/physiology , Psoriasis/physiopathology , Aminoquinolines/toxicity , Animals , Humans , Imiquimod , Mice , Psoriasis/chemically induced
11.
J Biol Chem ; 291(24): 12851-12861, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27129283

ABSTRACT

Macrophages constitute a first line of pathogen defense by triggering a number of inflammatory responses and the secretion of various pro-inflammatory cytokines. Recently, we and others found that IκBζ, an atypical IκB family member and transcriptional coactivator of selected NF-κB target genes, is essential for macrophage expression of a subset of pro-inflammatory cytokines, such as IL-6, IL-12, and CCL2. Despite defective pro-inflammatory cytokine expression, however, IκBζ-deficient mice develop symptoms of chronic inflammation. To elucidate this discrepancy, we analyzed a regulatory role of IκBζ for the expression of anti-inflammatory cytokines and identified IκBζ as an essential activator of IL-10 expression. LPS-challenged peritoneal and bone marrow-derived macrophages from IκBζ-deficient mice revealed strongly decreased transcription and secretion of IL-10 compared with wild-type mice. Moreover, ectopic expression of IκBζ was sufficient to stimulate Il10 transcription. On the molecular level, IκBζ directly activated the Il10 promoter at a proximal κB site and was required for the transcription-enhancing trimethylation of histone 3 at lysine 4. Together, our findings show for the first time the IκBζ-dependent expression of an anti-inflammatory cytokine that is crucial in controlling immune responses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interleukin-10/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Immunoblotting , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-10/genetics , Macrophages/cytology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/antagonists & inhibitors , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction
12.
Blood ; 122(13): 2242-50, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23869088

ABSTRACT

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.


Subject(s)
Gene Regulatory Networks , Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Gene Knockdown Techniques , Humans , I-kappa B Proteins , Immunoprecipitation , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/genetics , Polymerase Chain Reaction , RNA, Small Interfering , Signal Transduction/physiology , Transcriptome , Transduction, Genetic
13.
Proc Natl Acad Sci U S A ; 108(35): 14596-601, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21873235

ABSTRACT

The protease activity of the paracaspase Malt1 contributes to antigen receptor-mediated lymphocyte activation and lymphomagenesis. Malt1 activity is required for optimal NF-κB activation, but little is known about the responsible substrate(s). Here we report that Malt1 cleaved the NF-κB family member RelB after Arg-85. RelB cleavage induced its proteasomal degradation and specifically controlled DNA binding of RelA- or c-Rel-containing NF-κB complexes. Overexpression of RelB inhibited expression of canonical NF-κB target genes and led to impaired survival of diffuse large B-cell lymphoma cell lines characterized by constitutive Malt1 activity. These findings identify a central role for Malt1-dependent RelB cleavage in canonical NF-κB activation and thereby provide a rationale for the targeting of Malt1 in immunomodulation and cancer treatment.


Subject(s)
Caspases/physiology , Lymphocytes/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Neoplasm Proteins/physiology , Transcription Factor RelB/metabolism , Cell Line, Tumor , Humans , Lymphocyte Activation , Lymphoma, Large B-Cell, Diffuse/etiology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Transcription Factor RelA/metabolism
14.
Blood Adv ; 8(8): 1934-1945, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38197968

ABSTRACT

ABSTRACT: Antibody-based immunotherapies have revolutionized leukemia and lymphoma treatment, with animal studies being crucial in evaluating effectiveness and side effects. By targeting the evolutionary conserved Slamf7 immune receptor, which is naturally expressed by the murine multiple myeloma cell line MPC-11, we have developed a syngeneic mouse model for direct comparison of 3 immunotherapies: monoclonal antibodies (mAb), bispecific T-cell engagers (BiTE), and chimeric antigen receptor (CAR) T cells (CART), all targeting Slamf7. Slamf7-BiTE is a bispecific single-chain antibody consisting of α-Slamf7 and α-CD3 Fv fragments joined through a Gly-Ser linker, and Slamf7-CART comprises the α-Slamf7 Fv fragment fused to the msCD8α transmembrane and msCD28, 4-1BB, and CD3ζ intracellular signaling domains. Slamf7-BiTE and Slamf7-CART effectively killed MPC-11 cells in vitro, independently of Slamf7-mediated inhibitory signaling by self-ligation. After chimerizing the constant region of the rat-anti-mouse Slamf7 antibody to mouse Fc-immunoglobulin G2a for enhanced effector functions, Slamf7-mAb triggered antigen-specific antibody-dependent cellular cytotoxicity by binding to Fcγ receptor IV. In vivo, all 3 immunotherapies showed antitumor effects against Slamf7-expressing targets. Unlike Slamf7-mAb, Slamf7-BiTE led to considerable side effects in test animals, including weight loss and general malaise, which were also observed to a lesser extent after Slamf7-CART infusion. In allogeneic transplant, Slamf7-BiTE and Slamf7-CART maintained activity compared with the nontransplant setting, whereas Slamf7-mAb displayed enhanced antimyeloma activity. In summary, our model faithfully replicates treatment efficacy and side effects detected after human immunotherapy. It aids in developing and improving immunotherapies and may help devise novel approaches to mitigate undesired effects in steady state and allogeneic stem cell transplantation.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Mice , Rats , Humans , Animals , Multiple Myeloma/drug therapy , Cell Line, Tumor , Disease Models, Animal , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Antibodies, Bispecific/therapeutic use
15.
Immunol Rev ; 232(1): 334-47, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19909374

ABSTRACT

Proteases control many vital aspects of humoral and cellular immune responses, including the maturation of cytokines and the killing of target cells. Recently, it has become evident that triggering of the T-cell receptor controls T-cell proliferation through proteases such as mucosa-associated lymphoid tissue 1 (MALT1) and Caspase-8 that act both as adapters and enzymes. Here, we discuss the role of these and other proteases that are relevant to the control of the T-cell response and represent interesting targets of therapeutic immunomodulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caspase 8/metabolism , Caspases/metabolism , Neoplasm Proteins/metabolism , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/immunology , Animals , Caspase 8/immunology , Caspases/immunology , Cell Proliferation , Humans , Lymphocyte Activation , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Neoplasm Proteins/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
16.
Leuk Lymphoma ; 64(4): 799-807, 2023 04.
Article in English | MEDLINE | ID: mdl-36577021

ABSTRACT

Plasmablastic lymphoma (PBL) represents a rare distinct lymphoma entity with plasmablastic morphology and plasmacytic immunophenotype that is characterized by an aggressive clinical course. Standard chemotherapeutic regimens often remain insufficient to cure affected patients. Recently, comprehensive molecular analyses of large cohorts of primary PBL samples have revealed the mutational landscape as well as the pattern of copy number alterations of this rare lymphoma subtype. Identification of recurrent aberrations affecting the JAK-STAT, RAS-RAF, NOTCH, IRF4, and MYC signaling pathways drive the molecular pathogenesis of PBL and hold great potential for novel targeted therapeutic approaches.


Subject(s)
Plasmablastic Lymphoma , Humans , Plasmablastic Lymphoma/diagnosis , Plasmablastic Lymphoma/genetics , Plasmablastic Lymphoma/therapy , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Plasma Cells/pathology
17.
Cancers (Basel) ; 15(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37190302

ABSTRACT

Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM.

18.
Leukemia ; 37(1): 178-189, 2023 01.
Article in English | MEDLINE | ID: mdl-36352190

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kß/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kß/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kß/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kß/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kß/δ signaling and thus identifies a previously unappreciated role of the PI3Kß isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kß/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Lymphoma, Large B-Cell, Diffuse/pathology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor
19.
Blood Adv ; 7(24): 7433-7444, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37934892

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults, but first-line immunochemotherapy fails to produce a durable response in about one-third of the patients. Because tumor cells often reprogram their metabolism, we investigated the importance of glutaminolysis, a pathway converting glutamine to generate energy and various metabolites, for the growth of DLBCL cells. Glutaminase-1 (GLS1) expression was robustly detected in DLBCL biopsy samples and cell lines. Both pharmacological inhibition and genetic knockdown of GLS1 induced cell death in DLBCL cells regardless of their subtype classification, whereas primary B cells remained unaffected. Interestingly, GLS1 inhibition resulted not only in reduced levels of intermediates of the tricarboxylic acid cycle but also in a strong mitochondrial accumulation of reactive oxygen species. Supplementation of DLBCL cells with α-ketoglutarate or with the antioxidant α-tocopherol mitigated oxidative stress and abrogated cell death upon GLS1 inhibition, indicating an essential role of glutaminolysis in the protection from oxidative stress. Furthermore, the combination of the GLS1 inhibitor CB-839 with the therapeutic BCL2 inhibitor ABT-199 not only induced massive reactive oxygen species (ROS) production but also exhibited highly synergistic cytotoxicity, suggesting that simultaneous targeting of GLS1 and BCL2 could represent a novel therapeutic strategy for patients with DLBCL.


Subject(s)
Antineoplastic Agents , Glutaminase , Lymphoma, Large B-Cell, Diffuse , Oxidative Stress , Humans , Glutaminase/antagonists & inhibitors , Glutaminase/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species , Antineoplastic Agents/therapeutic use
20.
Leukemia ; 37(3): 670-679, 2023 03.
Article in English | MEDLINE | ID: mdl-36604606

ABSTRACT

Epstein-Barr virus (EBV) associated diffuse large B-cell lymphoma (DLBCL) represents a rare aggressive B-cell lymphoma subtype characterized by an adverse clinical outcome. EBV infection of lymphoma cells has been associated with different lymphoma subtypes while the precise role of EBV in lymphomagenesis and specific molecular characteristics of these lymphomas remain elusive. To further unravel the biology of EBV associated DLBCL, we present a comprehensive molecular analysis of overall 60 primary EBV positive (EBV+) DLBCLs using targeted sequencing of cancer candidate genes (CCGs) and genome-wide determination of recurrent somatic copy number alterations (SCNAs) in 46 cases, respectively. Applying the LymphGen classifier 2.0, we found that less than 20% of primary EBV + DLBCLs correspond to one of the established molecular DLBCL subtypes underscoring the unique biology of this entity. We have identified recurrent mutations activating the oncogenic JAK-STAT and NOTCH pathways as well as frequent amplifications of 9p24.1 contributing to immune escape by PD-L1 overexpression. Our findings enable further functional preclinical and clinical studies exploring the therapeutic potential of targeting these aberrations in patients with EBV + DLBCL to improve outcome.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL