Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Curr Osteoporos Rep ; 20(6): 433-441, 2022 12.
Article in English | MEDLINE | ID: mdl-36087213

ABSTRACT

PURPOSE OF REVIEW: Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS: Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Quality of Life , Bone and Bones , Muscle, Skeletal , Muscle Weakness/chemically induced , Neoplasms/drug therapy , Antineoplastic Agents/adverse effects
2.
Exp Physiol ; 106(2): 506-518, 2021 02.
Article in English | MEDLINE | ID: mdl-33369797

ABSTRACT

NEW FINDINGS: What is the central question of this study? Cachexia causes severe changes in skeletal muscle metabolism and function and is a key predictor of negative outcomes in cancer patients: what are the changes in whole animal energy metabolism and mitochondria in skeletal muscle? What is the main finding and its importance? There is decreased whole animal energy expenditure in mice with cachexia. They displayed highly dysmorphic mitochondria and mitophagy in skeletal muscle. ABSTRACT: Cachexia causes changes in skeletal muscle metabolism. Mice with MDA-MB-231 breast cancer bone metastases and cachexia have decreased whole animal energy metabolism and increased skeletal muscle mitophagy. We examined whole animal energy metabolism by indirect calorimetry in mice with MDA-MB-231 breast cancer bone metastases, and showed decreased energy expenditure. We also examined skeletal muscle mitochondria and found that mitochondria in mice with MDA-MB-231 bone metastases are highly dysmorphic and have altered protein markers of mitochondrial biogenesis and dynamics. In addition, LC3B protein was increased in mitochondria of skeletal muscle from cachectic mice, and colocalized with the mitochondrial protein Tom20. Our data demonstrate the importance of mitophagy in cachexia. Understanding these changes will help contribute to defining treatments for cancer cachexia.


Subject(s)
Bone Neoplasms/metabolism , Cachexia/metabolism , Mammary Neoplasms, Experimental/metabolism , Mitophagy/physiology , Animals , Bone Neoplasms/secondary , Cachexia/pathology , Energy Metabolism/physiology , Female , Mammary Neoplasms, Experimental/pathology , Mice , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis
3.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946587

ABSTRACT

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Subject(s)
Cachexia , Muscle Fibers, Skeletal , Oxidative Stress , Sirtuin 1 , Animals , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Cachexia/prevention & control , Sirtuin 1/metabolism , Sirtuin 1/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Mice , Oxidative Stress/drug effects , Mice, Inbred C57BL , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/complications , Male , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Cell Line , Niacin/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism
4.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333318

ABSTRACT

SUMMARY: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFß release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance: TGFß is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFß causes several bone disorders and skeletal muscle weakness. Reducing excess TGFß release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.

5.
J Vis Exp ; (182)2022 04 06.
Article in English | MEDLINE | ID: mdl-35467646

ABSTRACT

Transient gene expression modulation in murine skeletal muscle by plasmid electroporation is a useful tool for assessing normal and pathological physiology. Overexpression or knockdown of target genes enables investigators to manipulate individual molecular events and, thus, better understand the mechanisms that impact muscle mass, muscle metabolism, and contractility. In addition, electroporation of DNA plasmids that encode fluorescent tags allows investigators to measure changes in subcellular localization of proteins in skeletal muscle in vivo. A key functional assessment of skeletal muscle includes the measurement of muscle contractility. In this protocol, we demonstrate that whole muscle contractility studies are still possible after plasmid DNA injection, electroporation, and gene expression modulation. The goal of this instructional procedure is to demonstrate the step-by-step method of DNA plasmid electroporation into mouse skeletal muscle to facilitate uptake and expression in the myofibers of the tibialis anterior and extensor digitorum longus muscles, as well as to demonstrate that skeletal muscle contractility is not compromised by injection and electroporation.


Subject(s)
Electroporation , Gene Transfer Techniques , Animals , DNA/genetics , Electroporation/methods , Mice , Muscle, Skeletal/metabolism , Plasmids/genetics
6.
Am J Physiol Regul Integr Comp Physiol ; 300(3): R595-604, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21209383

ABSTRACT

The arterial blockage in patients with peripheral arterial disease (PAD) restricts oxygen delivery to skeletal muscles distal to the blockage. In advanced-stage PAD patients, this creates a chronic ischemic condition in the affected muscles. However, in the majority of PAD patients, the muscles distal to the blockage only become ischemic during physical activity when the oxygen demands of these muscles are increased. Therefore, the skeletal muscle of most PAD patients undergoes repeated cycles of low-grade ischemia-reperfusion each time the patient is active and then rests. This has been speculated to contribute to the biochemical and morphological myopathies observed in PAD patients. The current study aimed to determine, using a rodent model, whether repeated hind limb muscle contractions during blood flow restriction to the hind limb muscles increases NF-κB activity. We, subsequently, determined whether an increase in NF-κB activity during this condition is required for the increased transcription of specific atrophy-related genes and muscle fiber atrophy. We found that hind limb muscle contractions during blood flow restriction to the limb increased NF-κB activity, the transcription of specific atrophy-related genes, and caused a 35% decrease in muscle fiber cross-sectional area. We further found that inhibition of NF-κB activity, via gene transfer of a dominant-negative inhibitor of κBα (d.n. IκBα), prevented the increase in atrophy gene expression and muscle fiber atrophy. These findings demonstrate that when blood flow to skeletal muscle is restricted, repeated cycles of muscle contraction can cause muscle fiber atrophy that requires NF-κB-IκBα signaling.


Subject(s)
I-kappa B Proteins/metabolism , Intermittent Claudication/metabolism , Ischemia/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Animals , Disease Models, Animal , Electric Stimulation , Electroporation , Gene Expression Regulation , Gene Transfer Techniques , Hindlimb , I-kappa B Proteins/genetics , Intermittent Claudication/genetics , Intermittent Claudication/pathology , Intermittent Claudication/physiopathology , Ischemia/genetics , Ischemia/pathology , Ischemia/physiopathology , Ligation , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , NF-KappaB Inhibitor alpha , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/metabolism , Regional Blood Flow , Time Factors , Transcription, Genetic
7.
J Cachexia Sarcopenia Muscle ; 12(6): 1597-1612, 2021 12.
Article in English | MEDLINE | ID: mdl-34664403

ABSTRACT

BACKGROUND: Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS: C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS: C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS: Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.


Subject(s)
Antineoplastic Agents , Transcription Factors , Animals , Antineoplastic Agents/adverse effects , Mice , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Transcription Factors/genetics
8.
J Appl Physiol (1985) ; 131(6): 1718-1730, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34672766

ABSTRACT

Cancer cachexia is a wasting disorder associated with advanced cancer that contributes to mortality. Cachexia is characterized by involuntary loss of body weight and muscle weakness that affects physical function. Regulated in DNA damage and development 1 (REDD1) is a stress-response protein that is transcriptionally upregulated in muscle during wasting conditions and inhibits mechanistic target of rapamycin complex 1 (mTORC1). C2C12 myotubes treated with Lewis lung carcinoma (LLC)-conditioned media increased REDD1 mRNA expression and decreased myotube diameter. To investigate the role of REDD1 in cancer cachexia, we inoculated 12-wk-old male wild-type or global REDD1 knockout (REDD1 KO) mice with LLC cells and euthanized 28 days later. Wild-type mice had increased skeletal muscle REDD1 expression, and REDD1 deletion prevented loss of body weight and lean tissue mass but not fat mass. We found that REDD1 deletion attenuated loss of individual muscle weights and loss of myofiber cross-sectional area. We measured markers of the Akt/mTORC1 pathway and found that, unlike wild-type mice, phosphorylation of both Akt and 4E-BP1 was maintained in the muscle of REDD1 KO mice after LLC inoculation, suggesting that loss of REDD1 is beneficial in maintaining mTORC1 activity in mice with cancer cachexia. We measured Foxo3a phosphorylation as a marker of the ubiquitin proteasome pathway and autophagy and found that REDD1 deletion prevented dephosphorylation of Foxo3a in muscles from cachectic mice. Our data provide evidence that REDD1 plays an important role in cancer cachexia through the regulation of both protein synthesis and protein degradation pathways.NEW & NOTEWORTHY Cancer cachexia is a debilitating and lethal consequence of many advanced cancers. REDD1, a negative regulator of mTORC1 activity, is an emerging target in cachexia. Our data show that skeletal muscle REDD1 expression is increased in LLC-induced cancer cachexia. Mice lacking REDD1 have attenuated skeletal muscle atrophy that is likely due to maintaining both protein synthesis and inhibiting protein degradation.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Animals , Cachexia/etiology , Cachexia/pathology , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/pathology , DNA Damage , Male , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Signal Transduction
9.
Muscle Nerve ; 41(1): 110-3, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19813194

ABSTRACT

We examined reactive oxygen species as upstream activators of nuclear factor kappaB; (NF-kappaB) and forkhead box O (Foxo) in skeletal muscle during disuse atrophy. Catalase, an enzyme that degrades H2O2, was overexpressed in soleus muscles via plasmid injection prior to 7 days of hindlimb immobilization. The increased catalase activity abolished immobilization-induced transactivation of both NF-kappaB and Foxo and attenuated the loss of muscle mass. Thus, H2O2 may be an important initiator of these signaling pathways that lead to muscle atrophy.


Subject(s)
Enzyme Activation/physiology , Forkhead Transcription Factors/metabolism , Muscle, Skeletal/metabolism , Muscular Disorders, Atrophic/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/pharmacology , Animals , Blotting, Western , Cell Line , Disease Models, Animal , Follow-Up Studies , Forkhead Transcription Factors/drug effects , Male , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/pathology , NF-kappa B/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction
10.
J Bone Miner Res ; 35(2): 368-381, 2020 02.
Article in English | MEDLINE | ID: mdl-31614017

ABSTRACT

Carboplatin is a chemotherapy drug used to treat solid tumors but also causes bone loss and muscle atrophy and weakness. Bone loss contributes to muscle weakness through bone-muscle crosstalk, which is prevented with the bisphosphonate zoledronic acid (ZA). We treated mice with carboplatin in the presence or absence of ZA to assess the impact of bone resorption on muscle. Carboplatin caused loss of body weight, muscle mass, and bone mass, and also led to muscle weakness as early as 7 days after treatment. Mice treated with carboplatin and ZA lost body weight and muscle mass but did not lose bone mass. In addition, muscle function in mice treated with ZA was similar to control animals. We also used the anti-TGFß antibody (1D11) to prevent carboplatin-induced bone loss and showed similar results to ZA-treated mice. We found that atrogin-1 mRNA expression was increased in muscle from mice treated with carboplatin, which explained muscle atrophy. In mice treated with carboplatin for 1 or 3 days, we did not observe any bone or muscle loss, or muscle weakness. In addition, reduced caloric intake in the carboplatin treated mice did not cause loss of bone or muscle mass, or muscle weakness. Our results show that blocking carboplatin-induced bone resorption is sufficient to prevent skeletal muscle weakness and suggests another benefit to bone therapy beyond bone in patients receiving chemotherapy. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Muscle, Skeletal , Animals , Bone Density Conservation Agents , Diphosphonates/pharmacology , Imidazoles/pharmacology , Mice , Zoledronic Acid/pharmacology
11.
Antioxidants (Basel) ; 9(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210013

ABSTRACT

Clinical use of the chemotherapeutic doxorubicin (DOX) promotes skeletal muscle atrophy and weakness, adversely affecting patient mobility and strength. Although the mechanisms responsible for DOX-induced skeletal muscle dysfunction remain unclear, studies implicate the significant production of reactive oxygen species (ROS) in this pathology. Supraphysiological ROS levels can enhance protein degradation via autophagy, and it is established that DOX upregulates autophagic signaling in skeletal muscle. To determine the precise contribution of accelerated autophagy to DOX-induced skeletal muscle dysfunction, we inhibited autophagy in the soleus via transduction of a dominant negative mutation of the autophagy related 5 (ATG5) protein. Targeted inhibition of autophagy prevented soleus muscle atrophy and contractile dysfunction acutely following DOX administration, which was associated with a reduction in mitochondrial ROS and maintenance of mitochondrial respiratory capacity. These beneficial modifications were potentially the result of enhanced transcription of antioxidant response element-related genes and increased antioxidant capacity. Specifically, our results showed significant upregulation of peroxisome proliferator-activated receptor gamma co-activator 1-alpha, nuclear respiratory factor-1, nuclear factor erythroid-2-related factor-2, nicotinamide-adenine dinucleotide phosphate quinone dehydrogenase-1, and catalase in the soleus with DOX treatment when autophagy was inhibited. These findings establish a significant role of autophagy in the development of oxidative stress and skeletal muscle weakness following DOX administration.

12.
Article in English | MEDLINE | ID: mdl-31032492

ABSTRACT

BACKGROUND: Chemotherapy used to treat malignancy can lead to loss of skeletal muscle mass and reduced force production, and can reduce bone volume in mice. We have shown that bone-muscle crosstalk is a key nexus in skeletal muscle function and bone homeostasis in osteolytic breast cancer bone metastases. Because chemotherapy has significant negative side effects on bone mass, and because bone loss can drive skeletal muscle weakness, we have examined the effects of chemotherapy on the musculoskeletal system in mice with breast cancer bone metastases. METHODS AND RESULTS: Six-week-old Female athymic nude mice were inoculated with 105 MDA-MB231 human breast cancer cells into the left ventricle and bone metastases were confirmed by X-ray. Mice were injected with carboplatin at a dose of 60mg/kg once per week starting 4 days after tumor inoculation. Skeletal muscle was collected for biochemical analysis and extensor digitorum longus (EDL) whole muscle contractility was measured. The femur and tibia bone parameters were assessed by microCT and tumor burden in bone was determined by histology. Healthy mice treated with carboplatin lose whole body weight and have reduced individual muscle weights (gastrocnemius, tibialis anterior (TA), and EDL), reduced trabecular bone volume (BV/TV), and reduced EDL function. Mice with MDA-MB-231 bone metastases treated with carboplatin lose body weight, and have reduced EDL function as healthy mice treated with carboplatin. Mice with MDA-MB-231 bone metastases plus carboplatin do have reduced proximal tibia BV/TV compared to carboplatin alone, but carboplatin does reduce tumor burden in bone. CONCLUSIONS: Our data shows that carboplatin treatment, aimed at reducing tumor burden, contributes to cachexia and trabecular bone loss. The muscle atrophy and weakness may occur through bone-muscle crosstalk and would lead to a feed-forward cycle of musculoskeletal degradation. Despite anti-tumor effects of chemotherapy, musculoskeletal impairment is still significant in mice with bone metastases.

13.
Toxicon ; 144: 48-54, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29407164

ABSTRACT

Botulinum neurotoxin type A (BoNT/A) is used as a therapeutic tool to induce chemical denervation of spastically contracted muscles, yet the neurotoxin can also cause skeletal muscle atrophy. The underlying proteolytic mechanisms that induce this atrophy remain unclear. Our previous work has highlighted increased ubiquitin proteasome system (UPS) activity in soleus muscle of male Sprague Dawley rats following hind limb injection of BoNT/A, with the chymotrypsin-like activity of the 20s proteasome the most active. Thus, we chose to inhibit 20s proteasome activity in BoNT/A injected hind limb to determine the effect on soleus muscle atrophy. Epoxomicin is commonly used to inhibit the proteasome in vivo, binding specifically and irreversibly to the 20s proteasome catalytic subunits. Daily subcutaneous injections of epoxomicin abolished BoNT/A-induced elevations in 20s chymotrypsin-like activity both 3 days and 10 days post BoNT/A injection. Furthermore, BoNT/A-induced elevations in polyubiquitination remained elevated in BoNT/A + epoxomicin treated muscle, presumably due to epoxomicin's inhibition of the proteasome causing a back-up of polyubiquitinated proteins. Despite inhibition of the proteasome, epoxomicin was insufficient to significantly attenuate soleus muscle fiber atrophy 3 days following BoNT/A injection however, 10 days of daily epoxomicin injection was sufficient to spare ∼20% of muscle wasting. The mechanism of the remaining 80% of BoNT/A-induced atrophy presumably occurs via mechanisms outside of the 20s proteasome.


Subject(s)
Botulinum Toxins, Type A/toxicity , Muscle, Skeletal/drug effects , Muscular Atrophy/chemically induced , Proteasome Endopeptidase Complex/drug effects , Animals , Male , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Oligopeptides/pharmacology , Proteolysis , Rats, Sprague-Dawley , Ubiquitination/drug effects
14.
J Appl Physiol (1985) ; 119(1): 83-92, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25953835

ABSTRACT

Botulinum neurotoxin type A (BoNT/A) is used clinically to induce therapeutic chemical denervation of spastically contracted skeletal muscles. However, BoNT/A administration can also cause atrophy. We sought to determine whether a major proteolytic pathway contributing to atrophy in multiple models of muscle wasting, the ubiquitin proteasome system (UPS), is involved in BoNT/A-induced atrophy. Three and ten days following BoNT/A injection of rat hindlimb, soleus muscle fiber cross-sectional area was reduced 25 and 65%, respectively. The transcriptional activity of NF-κB and Foxo was significantly elevated at 3 days (2- to 4-fold) and 10 days (5- to 6-fold). Muscle RING-finger protein-1 (MuRF1) activity was elevated (2-fold) after 3 days but not 10 days, while atrogin-1 activity was not elevated at any time point. BoNT/A-induced polyubiquitination occurred after 3 days (3-fold increase) but was totally absent after 10 days. Proteasome activity was elevated (1.5- to 2-fold) after 3 and 10 days. We employed the use of heat shock protein 70 (Hsp70) to inhibit NF-κB and Foxo transcriptional activity. Electrotransfer of Hsp70 into rat soleus, before BoNT/A administration, was insufficient to attenuate atrophy. It was also insufficient to decrease BoNT/A-induced Foxo activity at 3 days, although NF-κB activity was abolished. By 10 days both NF-κB and Foxo activation were abolished by Hsp70. Hsp70-overexpression was unable to alter the levels of BoNT/A-induced effects on MuRF1/atrogin-1, polyubiquitination, or proteasome activity. In conclusion, Hsp70 overexpression is insufficient to attenuate BoNT/A-induced atrophy. It remains unclear what proteolytic mechanism/s are contributing to BoNT/A-induced atrophy, although a Foxo-MuRF1-ubiquitin-proteasome contribution may exist, at least in early BoNT/A-induced atrophy. Further clarification of UPS involvement in BoNT/A-induced atrophy is warranted.


Subject(s)
Botulinum Toxins, Type A/toxicity , Gene Expression/drug effects , HSP70 Heat-Shock Proteins/biosynthesis , Muscle, Skeletal/pathology , Animals , Electroporation , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Hindlimb/pathology , Male , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscular Atrophy/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Peptide Hydrolases/drug effects , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Plasmids/drug effects , Plasmids/genetics , Proteasome Endopeptidase Complex/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL