ABSTRACT
The Mre11/Rad50/Nbs1 protein complex plays central enzymatic and signaling roles in the DNA-damage response. Nuclease (Mre11) and scaffolding (Rad50) components of MRN have been extensively characterized, but the molecular basis of Nbs1 function has remained elusive. Here, we present a 2.3A crystal structure of the N-terminal region of fission yeast Nbs1, revealing an unusual but conserved architecture in which the FHA- and BRCT-repeat domains structurally coalesce. We demonstrate that diphosphorylated pSer-Asp-pThr-Asp motifs, recently identified as multicopy docking sites within Mdc1, are evolutionarily conserved Nbs1 binding targets. Furthermore, we show that similar phosphomotifs within Ctp1, the fission yeast ortholog of human CtIP, promote interactions with the Nbs1 FHA domain that are necessary for Ctp1-dependent resistance to DNA damage. Finally, we establish that human Nbs1 interactions with Mdc1 occur through both its FHA- and BRCT-repeat domains, suggesting how their structural and functional interdependence underpins Nbs1 adaptor functions in the DNA-damage response.
Subject(s)
Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA Repair , Nuclear Proteins/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/chemistry , Amino Acid Sequence , Crystallography, X-Ray , DNA Damage , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Phosphorylation , Protein Structure, Tertiary , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Sequence AlignmentABSTRACT
H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.
Subject(s)
Birds/virology , Orthomyxoviridae/chemistry , Orthomyxoviridae/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/chemistry , Models, Molecular , Zoonoses/transmission , Zoonoses/virologyABSTRACT
Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus. We find that the human H7 virus has significantly higher affinity for α-2,6-linked sialic acid analogues ('human receptor') than avian H7 while retaining the strong binding to α-2,3-linked sialic acid analogues ('avian receptor') characteristic of avian viruses. The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses. X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA. Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant. The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val. The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant. We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors.
Subject(s)
Influenza A virus/metabolism , Influenza, Human/virology , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Animals , Binding Sites , Birds/metabolism , Birds/virology , Crystallography, X-Ray , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H7N3 Subtype/metabolism , Influenza A virus/chemistry , Influenza A virus/isolation & purification , Models, Molecular , Mucins/chemistry , Mucins/metabolism , N-Acetylneuraminic Acid/analogs & derivatives , N-Acetylneuraminic Acid/chemistry , Protein Binding , Protein Conformation , Receptors, Virus/chemistryABSTRACT
The heterotrimeric AMP-activated protein kinase (AMPK) has a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy-producing pathways and inhibits energy-consuming processes. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer. AMPK is converted from an inactive form to a catalytically competent form by phosphorylation of the activation loop within the kinase domain: AMP binding to the γ-regulatory domain promotes phosphorylation by the upstream kinase, protects the enzyme against dephosphorylation, as well as causing allosteric activation. Here we show that ADP binding to just one of the two exchangeable AXP (AMP/ADP/ATP) binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active mammalian AMPK displays significantly tighter binding to ADP than to Mg-ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg-ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. The structure shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide-binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity.
Subject(s)
AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , AMP-Activated Protein Kinases/genetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Activation/genetics , Kinetics , Magnesium/metabolism , Mammals , Models, Molecular , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Binding , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , ThermodynamicsABSTRACT
SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.
Subject(s)
HIV-1/physiology , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Allosteric Regulation , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Dendritic Cells/metabolism , Dendritic Cells/virology , Deoxyadenine Nucleotides/metabolism , Deoxycytosine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Humans , Hydrolysis , Models, Biological , Models, Molecular , Monomeric GTP-Binding Proteins/genetics , Myeloid Cells/virology , Nucleoside-Triphosphatase/genetics , Protein Structure, Tertiary , Reverse Transcription , SAM Domain and HD Domain-Containing Protein 1 , Thymine Nucleotides/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus ReplicationABSTRACT
In 2004 an hemagglutinin 3 neuraminidase 8 (H3N8) equine influenza virus was transmitted from horses to dogs in Florida and subsequently spread throughout the United States and to Europe. To understand the molecular basis of changes in the antigenicity of H3 hemagglutinins (HAs) that have occurred during virus evolution in horses, and to investigate the role of HA in the equine to canine cross-species transfer, we used X-ray crystallography to determine the structures of the HAs from two antigenically distinct equine viruses and from a canine virus. Structurally all three are very similar with the majority of amino acid sequence differences between the two equine HAs located on the virus membrane-distal molecular surface. HAs of canine viruses are distinct in containing a Trp-222 â Leu substitution in the receptor binding site that influences specificity for receptor analogs. In the fusion subdomain of canine and recent equine virus HAs a unique difference is observed by comparison with all other HAs examined to date. Analyses of site-specific mutant HAs indicate that a single amino acid substitution, Thr-30 â Ser, influences interactions between N-terminal and C-terminal regions of the subdomain that are important in the structural changes required for membrane fusion activity. Both structural modifications may have facilitated the transmission of H3N8 influenza from horses to dogs.
Subject(s)
Amino Acid Substitution , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H3N8 Subtype/chemistry , Animals , Crystallography, X-Ray , Dog Diseases/genetics , Dog Diseases/metabolism , Dog Diseases/virology , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Horse Diseases/genetics , Horse Diseases/metabolism , Horse Diseases/virology , Horses , Influenza A Virus, H3N8 Subtype/metabolism , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Protein Structure, TertiaryABSTRACT
Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, K(M) values for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (K(I)) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodated in the I223R mutant structure in a similar way to wild type, thus explaining the kinetic data. Our structural data also show that, in contrast to a recently reported structure, the active site of 2009 pandemic neuraminidase can adopt an open conformation.
Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza, Human/virology , Neuraminidase/chemistry , Adamantane/pharmacology , Amino Acid Substitution , Binding Sites/genetics , Crystallography, X-Ray , Enzyme Inhibitors/therapeutic use , Humans , Hydrophobic and Hydrophilic Interactions , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Mutation , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Pandemics , Protein Conformation , Zanamivir/pharmacology , Zanamivir/therapeutic useABSTRACT
The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.
Subject(s)
Drug Resistance, Viral , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/enzymology , Mutation/genetics , Neuraminidase/chemistry , Neuraminidase/genetics , Oseltamivir/pharmacology , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/virology , Kinetics , Models, Molecular , Molecular Conformation , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Oseltamivir/chemistry , Oseltamivir/metabolism , Protein Binding , Zanamivir/pharmacologyABSTRACT
Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.
Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins , Cells, Cultured , Chromosomal Proteins, Non-Histone/analysis , DNA Breaks, Double-Stranded , DNA-Binding Proteins/analysis , Dimerization , Humans , Mice , Models, Molecular , Molecular Sequence Data , Phosphothreonine/metabolism , Protein Interaction Domains and Motifs , Threonine/metabolism , Tumor Suppressor p53-Binding Protein 1ABSTRACT
SHARPIN (SHANK-associated RH domain interacting protein) is part of a large multi-protein E3 ubiquitin ligase complex called LUBAC (linear ubiquitin chain assembly complex), which catalyzes the formation of linear ubiquitin chains and regulates immune and apoptopic signaling pathways. The C-terminal half of SHARPIN contains ubiquitin-like domain and Npl4-zinc finger domains that mediate the interaction with the LUBAC subunit HOIP and ubiquitin, respectively. In contrast, the N-terminal region does not show any homology with known protein interaction domains but has been suggested to be responsible for self-association of SHARPIN, presumably via a coiled-coil region. We have determined the crystal structure of the N-terminal portion of SHARPIN, which adopts the highly conserved pleckstrin homology superfold that is often used as a scaffold to create protein interaction modules. We show that in SHARPIN, this domain does not appear to be used as a ligand recognition domain because it lacks many of the surface properties that are present in other pleckstrin homology fold-based interaction modules. Instead, it acts as a dimerization module extending the functional applications of this superfold.
Subject(s)
Nerve Tissue Proteins/chemistry , Protein Folding , Protein Multimerization , Protein Subunits/chemistry , Ubiquitin-Protein Ligases/chemistry , Blood Proteins/chemistry , Crystallography, X-Ray , Humans , Phosphoproteins/chemistry , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Zinc FingersABSTRACT
An N-terminal fragment of human SHARPIN was recombinantly expressed in Escherichia coli, purified and crystallized. Crystals suitable for X-ray diffraction were obtained by a one-step optimization of seed dilution and protein concentration using a two-dimensional grid screen. The crystals belonged to the primitive tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 61.55, c = 222.81â Å. Complete data sets were collected from native and selenomethionine-substituted protein crystals at 100â K to 2.6 and 2.0â Å resolution, respectively.
Subject(s)
Carrier Proteins/chemistry , Ubiquitins/chemistry , Automation, Laboratory , Crystallization , Crystallography, X-Ray , HumansABSTRACT
The worldwide spread of H5N1 avian influenza has raised concerns that this virus might acquire the ability to pass readily among humans and cause a pandemic. Two anti-influenza drugs currently being used to treat infected patients are oseltamivir (Tamiflu) and zanamivir (Relenza), both of which target the neuraminidase enzyme of the virus. Reports of the emergence of drug resistance make the development of new anti-influenza molecules a priority. Neuraminidases from influenza type A viruses form two genetically distinct groups: group-1 contains the N1 neuraminidase of the H5N1 avian virus and group-2 contains the N2 and N9 enzymes used for the structure-based design of current drugs. Here we show by X-ray crystallography that these two groups are structurally distinct. Group-1 neuraminidases contain a cavity adjacent to their active sites that closes on ligand binding. Our analysis suggests that it may be possible to exploit the size and location of the group-1 cavity to develop new anti-influenza drugs.
Subject(s)
Antiviral Agents/chemistry , Drug Design , Influenza A Virus, H5N1 Subtype/enzymology , Influenza in Birds/drug therapy , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Acetamides/metabolism , Acetamides/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Birds/virology , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Models, Molecular , Mutation/genetics , Neuraminidase/classification , Neuraminidase/genetics , Oseltamivir , Protein ConformationABSTRACT
H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates.
Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/metabolism , Mutation/genetics , Receptors, Virus/metabolism , Animals , Cell Line , Crystallography, X-Ray , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H5N1 Subtype/chemistry , Poultry , Receptors, Virus/chemistryABSTRACT
The viruses that caused the three influenza pandemics of the twentieth century in 1918, 1957, and 1968 had distinct hemagglutinin receptor binding glycoproteins that had evolved the capacity to recognize human cell receptors. We have determined the structure of the H2 hemagglutinin from the second pandemic, the "Asian Influenza" of 1957. We compare it with the 1918 "Spanish Influenza" hemagglutinin, H1, and the 1968 "Hong Kong Influenza" hemagglutinin, H3, and show that despite its close overall structural similarity to H1, and its more distant relationship to H3, the H2 receptor binding site is closely related to that of H3 hemagglutinin. By analyzing hemagglutinins of potential H2 avian precursors of the pandemic virus, we show that the human receptor can be bound by avian hemagglutinins that lack the human-specific mutations of H2 and H3 pandemic viruses, Gln-226Leu, and Gly-228Ser. We show how Gln-226 in the avian H2 receptor binding site, together with Asn-186, form hydrogen bond networks through bound water molecules to mediate binding to human receptor. We show that the human receptor adopts a very similar conformation in both human and avian hemagglutinin-receptor complexes. We also show that Leu-226 in the receptor binding site of human virus hemagglutinins creates a hydrophobic environment near the Sia-1-Gal-2 glycosidic linkage that favors binding of the human receptor and is unfavorable for avian receptor binding. We consider the significance for the development of pandemics, of the existence of avian viruses that can bind to both avian and human receptors.
Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A virus/metabolism , Influenza, Human/virology , Protein Structure, Secondary , Animals , Asia/epidemiology , Binding Sites/genetics , Birds , Crystallography, X-Ray , Disease Outbreaks , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hong Kong/epidemiology , Humans , Influenza A virus/genetics , Influenza in Birds/virology , Influenza, Human/epidemiology , Models, Molecular , Mutation , Protein Binding , Protein Structure, Tertiary , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Spain/epidemiologyABSTRACT
Retroviruses are the aetiological agents of a range of human diseases including AIDS and T-cell leukaemias. They follow complex life cycles, which are still only partly understood at the molecular level. Maturation of newly formed retroviral particles is an essential step in production of infectious virions, and requires proteolytic cleavage of Gag polyproteins in the immature particle to form the matrix, capsid and nucleocapsid proteins present in the mature virion. Capsid proteins associate to form a dense viral core that may be spherical, cylindrical or conical depending on the genus of the virus. Nonetheless, these assemblies all appear to be composed of a lattice formed from hexagonal rings, each containing six capsid monomers. Here, we describe the X-ray structure of an individual hexagonal assembly from N-tropic murine leukaemia virus (N-MLV). The interface between capsid monomers is generally polar, consistent with weak interactions within the hexamer. Similar architectures are probably crucial for the regulation of capsid assembly and disassembly in all retroviruses. Together, these observations provide new insights into retroviral uncoating and how cellular restriction factors may interfere with viral replication.
Subject(s)
Capsid Proteins/chemistry , Leukemia Virus, Murine/chemistry , Amino Acid Sequence , Binding Sites , Capsid/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Virus AssemblyABSTRACT
Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 A of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.
Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Transcription Factors/metabolism , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , Basic-Leucine Zipper Transcription Factors , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/chemistry , Crystallography, X-Ray , Fanconi Anemia Complementation Group Proteins , Female , Humans , Microscopy, Fluorescence , Mutation , Nuclear Proteins/metabolism , Phosphopeptides/metabolism , Protein Binding , Protein Structure, Tertiary , TransfectionABSTRACT
Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27me3) via its catalytic SET domain. A missense mutation in the substrate of PRC2, histone H3K27M, is associated with certain pediatric brain cancers and is linked to a global decrease of H3K27me3 in the affected cells thought to be mediated by inhibition of PRC2 activity. We present here the crystal structure of human PRC2 in complex with the inhibitory H3K27M peptide bound to the active site of the SET domain, with the methionine residue located in the pocket that normally accommodates the target lysine residue. The structure and binding studies suggest a mechanism for the oncogenic inhibition of H3K27M. The structure also reveals how binding of repressive marks, like H3K27me3, to the EED subunit of the complex leads to enhancement of the catalytic efficiency of the SET domain and thus the propagation of this repressive histone modification.
Subject(s)
Histones/chemistry , Lysine/chemistry , Polycomb Repressive Complex 2/chemistry , Protein Domains , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinogenesis/genetics , Catalytic Domain , Crystallography, X-Ray , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/genetics , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Methylation , Models, Molecular , Mutation , Oncogenes/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein BindingSubject(s)
Cell Cycle Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Transcription Factors/chemistry , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Static Electricity , Transcription Factors/geneticsABSTRACT
FAN1 is a structure-selective DNA repair nuclease with 5' flap endonuclease activity, involved in the repair of interstrand DNA crosslinks. It is the only eukaryotic protein with a virus-type replication-repair nuclease ("VRR-Nuc") "module" that commonly occurs as a standalone domain in many bacteria and viruses. Crystal structures of three representatives show that they structurally resemble Holliday junction resolvases (HJRs), are dimeric in solution, and are able to cleave symmetric four-way junctions. In contrast, FAN1 orthologs are monomeric and cleave 5' flap structures in vitro, but not Holliday junctions. Modeling of the VRR-Nuc domain of FAN1 reveals that it has an insertion, which packs against the dimerization interface observed in the structures of the viral/bacterial VRR-Nuc proteins. We propose that these additional structural elements in FAN1 prevent dimerization and bias specificity toward flap structures.
Subject(s)
Bacterial Proteins/chemistry , DNA, Cruciform/metabolism , Endodeoxyribonucleases/chemistry , Exodeoxyribonucleases/chemistry , Holliday Junction Resolvases/chemistry , Amino Acid Sequence , Animals , Bacterial Proteins/metabolism , DNA Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Holliday Junction Resolvases/metabolism , Humans , Mice , Molecular Sequence Data , Multifunctional Enzymes , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Pseudomonas aeruginosa/enzymologyABSTRACT
Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite.