Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34043940

ABSTRACT

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Subject(s)
Drug Resistance, Bacterial/genetics , Metagenomics , Microbiota/genetics , Urban Population , Biodiversity , Databases, Genetic , Humans
2.
Nat Methods ; 20(4): 559-568, 2023 04.
Article in English | MEDLINE | ID: mdl-36959322

ABSTRACT

Structural variants (SVs) are a major driver of genetic diversity and disease in the human genome and their discovery is imperative to advances in precision medicine. Existing SV callers rely on hand-engineered features and heuristics to model SVs, which cannot scale to the vast diversity of SVs nor fully harness the information available in sequencing datasets. Here we propose an extensible deep-learning framework, Cue, to call and genotype SVs that can learn complex SV abstractions directly from the data. At a high level, Cue converts alignments to images that encode SV-informative signals and uses a stacked hourglass convolutional neural network to predict the type, genotype and genomic locus of the SVs captured in each image. We show that Cue outperforms the state of the art in the detection of several classes of SVs on synthetic and real short-read data and that it can be easily extended to other sequencing platforms, while achieving competitive performance.


Subject(s)
Deep Learning , Software , Humans , Genotype , Cues , Genomic Structural Variation , Genome, Human
3.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38262343

ABSTRACT

MOTIVATION: Recent advancements in long-read RNA sequencing have enabled the examination of full-length isoforms, previously uncaptured by short-read sequencing methods. An alternative powerful method for studying isoforms is through the use of barcoded short-read RNA reads, for which a barcode indicates whether two short-reads arise from the same molecule or not. Such techniques included the 10x Genomics linked-read based SParse Isoform Sequencing (SPIso-seq), as well as Loop-Seq, or Tell-Seq. Some applications, such as novel-isoform discovery, require very high coverage. Obtaining high coverage using long reads can be difficult, making barcoded RNA-seq data a valuable alternative for this task. However, most annotation pipelines are not able to work with a set of short reads instead of a single transcript, also not able to work with coverage gaps within a molecule if any. In order to overcome this challenge, we present an RNA-seq assembler that allows the determination of the expressed isoform per barcode. RESULTS: In this article, we present cloudrnaSPAdes, a tool for assembling full-length isoforms from barcoded RNA-seq linked-read data in a reference-free fashion. Evaluating it on simulated and real human data, we found that cloudrnaSPAdes accurately assembles isoforms, even for genes with high isoform diversity. AVAILABILITY AND IMPLEMENTATION: cloudrnaSPAdes is a feature release of a SPAdes assembler and version used for this article is available at https://github.com/1dayac/cloudrnaSPAdes-release.


Subject(s)
Genomics , RNA , Humans , RNA/genetics , Sequence Analysis, RNA/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Seq , Genomics/methods , High-Throughput Nucleotide Sequencing , Transcriptome
4.
Nucleic Acids Res ; 50(18): e108, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35924489

ABSTRACT

Recent pan-genome studies have revealed an abundance of DNA sequences in human genomes that are not present in the reference genome. A lion's share of these non-reference sequences (NRSs) cannot be reliably assembled or placed on the reference genome. Improvements in long-read and synthetic long-read (aka linked-read) technologies have great potential for the characterization of NRSs. While synthetic long reads require less input DNA than long-read datasets, they are algorithmically more challenging to use. Except for computationally expensive whole-genome assembly methods, there is no synthetic long-read method for NRS detection. We propose a novel integrated alignment-based and local assembly-based algorithm, Novel-X, that uses the barcode information encoded in synthetic long reads to improve the detection of such events without a whole-genome de novo assembly. Our evaluations demonstrate that Novel-X finds many non-reference sequences that cannot be found by state-of-the-art short-read methods. We applied Novel-X to a diverse set of 68 samples from the Polaris HiSeq 4000 PGx cohort. Novel-X discovered 16 691 NRS insertions of size > 300 bp (total length 18.2 Mb). Many of them are population specific or may have a functional impact.


Subject(s)
Genome, Human , High-Throughput Nucleotide Sequencing , Algorithms , Base Sequence , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods
5.
Genome Res ; 29(1): 116-124, 2019 01.
Article in English | MEDLINE | ID: mdl-30523036

ABSTRACT

Emerging Linked-Read technologies (aka read cloud or barcoded short-reads) have revived interest in short-read technology as a viable approach to understand large-scale structures in genomes and metagenomes. Linked-Read technologies, such as the 10x Chromium system, use a microfluidic system and a specialized set of 3' barcodes (aka UIDs) to tag short DNA reads sourced from the same long fragment of DNA; subsequently, the tagged reads are sequenced on standard short-read platforms. This approach results in interesting compromises. Each long fragment of DNA is only sparsely covered by reads, no information about the ordering of reads from the same fragment is preserved, and 3' barcodes match reads from roughly 2-20 long fragments of DNA. However, compared to long-read technologies, the cost per base to sequence is far lower, far less input DNA is required, and the per base error rate is that of Illumina short-reads. In this paper, we formally describe a particular algorithmic issue common to Linked-Read technology: the deconvolution of reads with a single 3' barcode into clusters that represent single long fragments of DNA. We introduce Minerva, a graph-based algorithm that approximately solves the barcode deconvolution problem for metagenomic data (where reference genomes may be incomplete or unavailable). Additionally, we develop two demonstrations where the deconvolution of barcoded reads improves downstream results, improving the specificity of taxonomic assignments and of k-mer-based clustering. To the best of our knowledge, we are the first to address the problem of barcode deconvolution in metagenomics.


Subject(s)
Algorithms , Metagenome , Metagenomics/methods , Sequence Analysis, DNA/methods , Software
6.
Genome Res ; 29(8): 1352-1362, 2019 08.
Article in English | MEDLINE | ID: mdl-31160374

ABSTRACT

Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products. While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assemblies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered through several contigs, making it difficult to reconstruct them. The situation is even more severe in shotgun metagenomics, where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.


Subject(s)
Genes, Bacterial , Metagenome , Metagenomics/methods , Multigene Family , Software , Contig Mapping , Datasets as Topic , Dental Plaque/microbiology , Gingiva/microbiology , Humans , Internet , Mouth Mucosa/microbiology , Pharynx/microbiology , Protein Biosynthesis , Tongue/microbiology
7.
Genome Res ; 29(11): 1860-1877, 2019 11.
Article in English | MEDLINE | ID: mdl-31628256

ABSTRACT

Available computational methods for tumor phylogeny inference via single-cell sequencing (SCS) data typically aim to identify the most likely perfect phylogeny tree satisfying the infinite sites assumption (ISA). However, the limitations of SCS technologies including frequent allele dropout and variable sequence coverage may prohibit a perfect phylogeny. In addition, ISA violations are commonly observed in tumor phylogenies due to the loss of heterozygosity, deletions, and convergent evolution. In order to address such limitations, we introduce the optimal subperfect phylogeny problem which asks to integrate SCS data with matching bulk sequencing data by minimizing a linear combination of potential false negatives (due to allele dropout or variance in sequence coverage), false positives (due to read errors) among mutation calls, and the number of mutations that violate ISA (real or because of incorrect copy number estimation). We then describe a combinatorial formulation to solve this problem which ensures that several lineage constraints imposed by the use of variant allele frequencies (VAFs, derived from bulk sequence data) are satisfied. We express our formulation both in the form of an integer linear program (ILP) and-as a first in tumor phylogeny reconstruction-a Boolean constraint satisfaction problem (CSP) and solve them by leveraging state-of-the-art ILP/CSP solvers. The resulting method, which we name PhISCS, is the first to integrate SCS and bulk sequencing data while accounting for ISA violating mutations. In contrast to the alternative methods, typically based on probabilistic approaches, PhISCS provides a guarantee of optimality in reported solutions. Using simulated and real data sets, we demonstrate that PhISCS is more general and accurate than all available approaches.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Phylogeny , Single-Cell Analysis/methods , Humans , Neoplasms/pathology
8.
Bioinformatics ; 38(1): 1-8, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34406356

ABSTRACT

MOTIVATION: The COVID-19 pandemic has ignited a broad scientific interest in viral research in general and coronavirus research in particular. The identification and characterization of viral species in natural reservoirs typically involves de novo assembly. However, existing genome, metagenome and transcriptome assemblers often are not able to assemble many viruses (including coronaviruses) into a single contig. Coverage variation between datasets and within dataset, presence of close strains, splice variants and contamination set a high bar for assemblers to process viral datasets with diverse properties. RESULTS: We developed coronaSPAdes, a novel assembler for RNA viral species recovery in general and coronaviruses in particular. coronaSPAdes leverages the knowledge about viral genome structures to improve assembly extending ideas initially implemented in biosyntheticSPAdes. We have shown that coronaSPAdes outperforms existing SPAdes modes and other popular short-read metagenome and viral assemblers in the recovery of full-length RNA viral genomes. AVAILABILITY AND IMPLEMENTATION: coronaSPAdes version used in this article is a part of SPAdes 3.15 release and is freely available at http://cab.spbu.ru/software/spades. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Software , Humans , Pandemics , Metagenome , Genome, Viral
9.
Bioinformatics ; 37(3): 326-333, 2021 04 20.
Article in English | MEDLINE | ID: mdl-32805010

ABSTRACT

MOTIVATION: In recent years, the well-known Infinite Sites Assumption has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging single-cell sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. RESULTS: We present Simulated Annealing Single-Cell inference (SASC): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS datasets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real datasets and in comparison with some other available methods. AVAILABILITY AND IMPLEMENTATION: The SASC tool is open source and available at https://github.com/sciccolella/sasc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Neoplasms , Single-Cell Analysis , Humans , Mutation , Neoplasms/genetics , Phylogeny , Sequence Analysis , Software
10.
Bioinformatics ; 36(4): 1082-1090, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31584621

ABSTRACT

MOTIVATION: We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. RESULTS: In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. AVAILABILITY AND IMPLEMENTATION: Meltos is available at https://github.com/ih-lab/Meltos. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Genome , Genomic Structural Variation , Genomics , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Phylogeny , Sequence Analysis , Software
11.
J Magn Reson Imaging ; 54(2): 462-471, 2021 08.
Article in English | MEDLINE | ID: mdl-33719168

ABSTRACT

BACKGROUND: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. PURPOSE: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. STUDY TYPE: Retrospective. POPULATION: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). FIELD STRENGTH/SEQUENCE: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. ASSESSMENT: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. STATISTICAL TESTS: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. RESULTS: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. DATA CONCLUSION: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Deep Learning , Prostatic Neoplasms , Radiology , Artificial Intelligence , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies
12.
BMC Bioinformatics ; 21(Suppl 1): 413, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33297943

ABSTRACT

BACKGROUND: Cancer progression reconstruction is an important development stemming from the phylogenetics field. In this context, the reconstruction of the phylogeny representing the evolutionary history presents some peculiar aspects that depend on the technology used to obtain the data to analyze: Single Cell DNA Sequencing data have great specificity, but are affected by moderate false negative and missing value rates. Moreover, there has been some recent evidence of back mutations in cancer: this phenomenon is currently widely ignored. RESULTS: We present a new tool, gpps, that reconstructs a tumor phylogeny from Single Cell Sequencing data, allowing each mutation to be lost at most a fixed number of times. The General Parsimony Phylogeny from Single cell (gpps) tool is open source and available at https://github.com/AlgoLab/gpps . CONCLUSIONS: gpps provides new insights to the analysis of intra-tumor heterogeneity by proposing a new progression model to the field of cancer phylogeny reconstruction on Single Cell data.


Subject(s)
Computational Biology/methods , DNA Mutational Analysis , Disease Progression , Mutation , Neoplasms/genetics , Neoplasms/pathology , Base Sequence , Evolution, Molecular , Humans , Phylogeny , Single-Cell Analysis
13.
BMC Bioinformatics ; 20(Suppl 11): 282, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31167637

ABSTRACT

BACKGROUND: Intra-tumor heterogeneity is known to contribute to cancer complexity and drug resistance. Understanding the number of distinct subclones and the evolutionary relationships between them is scientifically and clinically very important and still a challenging problem. RESULTS: In this paper, we present BAMSE (BAyesian Model Selection for tumor Evolution), a new probabilistic method for inferring subclonal history and lineage tree reconstruction of heterogeneous tumor samples. BAMSE uses somatic mutation read counts as input and can leverage multiple tumor samples accurately and efficiently. In the first step, possible clusterings of mutations into subclones are scored and a user defined number are selected for further analysis. In the next step, for each of these candidates, a list of trees describing the evolutionary relationships between the subclones is generated. These trees are sorted by their posterior probability. The posterior probability is calculated using a Bayesian model that integrates prior belief about the number of subclones, the composition of the tumor and the process of subclonal evolution. BAMSE also takes the sequencing error into account. We benchmarked BAMSE against state of the art software using simulated datasets. CONCLUSIONS: In this work we developed a flexible and fast software to reconstruct the history of a tumor's subclonal evolution using somatic mutation read counts across multiple samples. BAMSE software is implemented in Python and is available open source under GNU GLPv3 at https://github.com/HoseinT/BAMSE .


Subject(s)
Computational Biology/methods , Neoplasms/classification , Phylogeny , Algorithms , Bayes Theorem , Carcinoma, Renal Cell/genetics , Computer Simulation , Humans , Kidney Neoplasms/genetics , Models, Biological , Mutation/genetics , Neoplasms/genetics , Software
14.
Nature ; 470(7332): 59-65, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21293372

ABSTRACT

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Subject(s)
DNA Copy Number Variations/genetics , Genetics, Population , Genome, Human/genetics , Genomics , Gene Duplication/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Mutagenesis, Insertional/genetics , Reproducibility of Results , Sequence Analysis, DNA , Sequence Deletion/genetics
15.
Bioinformatics ; 30(12): i195-203, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24931984

ABSTRACT

MOTIVATION: Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. RESULTS: We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. AVAILABILITY: http://compbio.cs.brown.edu/software.


Subject(s)
Algorithms , DNA Copy Number Variations , Humans , Neoplasms/genetics
16.
Bioinformatics ; 30(12): i78-86, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24932008

ABSTRACT

MOTIVATION: High-throughput sequencing of tumor samples has shown that most tumors exhibit extensive intra-tumor heterogeneity, with multiple subpopulations of tumor cells containing different somatic mutations. Recent studies have quantified this intra-tumor heterogeneity by clustering mutations into subpopulations according to the observed counts of DNA sequencing reads containing the variant allele. However, these clustering approaches do not consider that the population frequencies of different tumor subpopulations are correlated by their shared ancestry in the same population of cells. RESULTS: We introduce the binary tree partition (BTP), a novel combinatorial formulation of the problem of constructing the subpopulations of tumor cells from the variant allele frequencies of somatic mutations. We show that finding a BTP is an NP-complete problem; derive an approximation algorithm for an optimization version of the problem; and present a recursive algorithm to find a BTP with errors in the input. We show that the resulting algorithm outperforms existing clustering approaches on simulated and real sequencing data. AVAILABILITY AND IMPLEMENTATION: Python and MATLAB implementations of our method are available at http://compbio.cs.brown.edu/software/ .


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Sequence Analysis, DNA , Cluster Analysis , Gene Frequency , Humans , Leukemia, Myeloid, Acute/genetics , Mutation
17.
Bioinformatics ; 30(24): 3458-66, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25355789

ABSTRACT

MOTIVATION: Structural variation is common in human and cancer genomes. High-throughput DNA sequencing has enabled genome-scale surveys of structural variation. However, the short reads produced by these technologies limit the study of complex variants, particularly those involving repetitive regions. Recent 'third-generation' sequencing technologies provide single-molecule templates and longer sequencing reads, but at the cost of higher per-nucleotide error rates. RESULTS: We present MultiBreak-SV, an algorithm to detect structural variants (SVs) from single molecule sequencing data, paired read sequencing data, or a combination of sequencing data from different platforms. We demonstrate that combining low-coverage third-generation data from Pacific Biosciences (PacBio) with high-coverage paired read data is advantageous on simulated chromosomes. We apply MultiBreak-SV to PacBio data from four human fosmids and show that it detects known SVs with high sensitivity and specificity. Finally, we perform a whole-genome analysis on PacBio data from a complete hydatidiform mole cell line and predict 1002 high-probability SVs, over half of which are confirmed by an Illumina-based assembly.


Subject(s)
Algorithms , Genomic Structural Variation , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Genomics/methods , Humans , Repetitive Sequences, Nucleic Acid , Sequence Deletion
18.
Genome Res ; 21(12): 2203-12, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22048523

ABSTRACT

With the increasing popularity of whole-genome shotgun sequencing (WGSS) via high-throughput sequencing technologies, it is becoming highly desirable to perform comparative studies involving multiple individuals (from a specific population, race, or a group sharing a particular phenotype). The conventional approach for a comparative genome variation study involves two key steps: (1) each paired-end high-throughput sequenced genome is compared with a reference genome and its (structural) differences are identified; (2) the lists of structural variants in each genome are compared against each other. In this study we propose to move away from this two-step approach to a novel one in which all genomes are compared with the reference genome simultaneously for obtaining much higher accuracy in structural variation detection. For this purpose, we introduce the maximum parsimony-based simultaneous structural variation discovery problem for a set of high-throughput sequenced genomes and provide efficient algorithms to solve it. We compare the proposed framework with the conventional framework, on the genomes of the Yoruban mother-father-child trio, as well as the CEU trio of European ancestry (both sequenced by Illumina platforms). We observed that the conventional framework predicts an unexpectedly high number of de novo variations in the child in comparison to the parents and misses some of the known variations. Our proposed framework, on the other hand, not only significantly reduces the number of incorrectly predicted de novo variations but also predicts more of the known (true) variations.


Subject(s)
Genetic Variation , Genome, Human/physiology , Models, Genetic , Sequence Analysis, DNA/methods , Humans
19.
Genome Res ; 21(6): 840-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21131385

ABSTRACT

Human genomes are now being rapidly sequenced, but not all forms of genetic variation are routinely characterized. In this study, we focus on Alu retrotransposition events and seek to characterize differences in the pattern of mobile insertion between individuals based on the analysis of eight human genomes sequenced using next-generation sequencing. Applying a rapid read-pair analysis algorithm, we discover 4342 Alu insertions not found in the human reference genome and show that 98% of a selected subset (63/64) experimentally validate. Of these new insertions, 89% correspond to AluY elements, suggesting that they arose by retrotransposition. Eighty percent of the Alu insertions have not been previously reported and more novel events were detected in Africans when compared with non-African samples (76% vs. 69%). Using these data, we develop an experimental and computational screen to identify ancestry informative Alu retrotransposition events among different human populations.


Subject(s)
Alu Elements/genetics , Genetic Variation , Genome, Human/genetics , Base Sequence , Black People/genetics , Computational Biology/methods , Genomics/methods , Humans , Molecular Sequence Data , Sequence Analysis, DNA/methods
20.
Bioinformatics ; 29(24): 3143-50, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24072733

ABSTRACT

MOTIVATION: Accurately predicting and genotyping indels longer than 30 bp has remained a central challenge in next-generation sequencing (NGS) studies. While indels of up to 30 bp are reliably processed by standard read aligners and the Genome Analysis Toolkit (GATK), longer indels have still resisted proper treatment. Also, discovering and genotyping longer indels has become particularly relevant owing to the increasing attention in globally concerted projects. RESULTS: We present MATE-CLEVER (Mendelian-inheritance-AtTEntive CLique-Enumerating Variant findER) as an approach that accurately discovers and genotypes indels longer than 30 bp from contemporary NGS reads with a special focus on family data. For enhanced quality of indel calls in family trios or quartets, MATE-CLEVER integrates statistics that reflect the laws of Mendelian inheritance. MATE-CLEVER's performance rates for indels longer than 30 bp are on a par with those of the GATK for indels shorter than 30 bp, achieving up to 90% precision overall, with >80% of calls correctly typed. In predicting de novo indels longer than 30 bp in family contexts, MATE-CLEVER even raises the standards of the GATK. MATE-CLEVER achieves precision and recall of ∼63% on indels of 30 bp and longer versus 55% in both categories for the GATK on indels of 10-29 bp. A special version of MATE-CLEVER has contributed to indel discovery, in particular for indels of 30-100 bp, the 'NGS twilight zone of indels', in the Genome of the Netherlands Project. AVAILABILITY AND IMPLEMENTATION: http://clever-sv.googlecode.com/


Subject(s)
Algorithms , Genetic Variation , Genome, Human , Genotyping Techniques/methods , INDEL Mutation/genetics , Sequence Analysis, DNA/methods , Computer Simulation , High-Throughput Nucleotide Sequencing , Humans , Inheritance Patterns
SELECTION OF CITATIONS
SEARCH DETAIL