ABSTRACT
Variation in obesity-related traits has a genetic basis with heritabilities between 40 and 70%. While the global obesity pandemic is usually associated with environmental changes related to lifestyle and socioeconomic changes, most genetic studies do not include all relevant environmental covariates, so the genetic contribution to variation in obesity-related traits cannot be accurately assessed. Some studies have described interactions between a few individual genes linked to obesity and environmental variables but there is no agreement on their total contribution to differences between individuals. Here we compared self-reported smoking data and a methylation-based proxy to explore the effect of smoking and genome-by-smoking interactions on obesity related traits from a genome-wide perspective to estimate the amount of variance they explain. Our results indicate that exploiting omic measures can improve models for complex traits such as obesity and can be used as a substitute for, or jointly with, environmental records to better understand causes of disease.
Subject(s)
Body Mass Index , DNA Methylation , Genome, Human , Smoking/genetics , HumansABSTRACT
BACKGROUND: Single-step genomic best linear unbiased prediction (ssGBLUP) allows the inclusion of information from genotyped and ungenotyped individuals in a single analysis. This avoids the need to genotype all candidates with the potential benefit of reducing overall costs. The aim of this study was to assess the effect of genotyping strategies, the proportion of genotyped candidates and the genotyping criterion to rank candidates to be genotyped, when using ssGBLUP evaluation. A simulation study was carried out assuming selection over several discrete generations where a proportion of the candidates were genotyped and evaluation was done using ssGBLUP. The scenarios compared were: (i) three genotyping strategies defined by their protocol for choosing candidates to be genotyped (RANDOM: candidates were chosen at random; TOP: candidates with the best genotyping criterion were genotyped; and EXTREME: candidates with the best and worse criterion were genotyped); (ii) eight proportions of genotyped candidates (p); and (iii) two genotyping criteria to rank candidates to be genotyped (candidates' own phenotype or estimated breeding values). The criteria of the comparison were the cumulated gain and reliability of the genomic estimated breeding values (GEBV). RESULTS: The genotyping strategy with the greatest cumulated gain was TOP followed by RANDOM, with EXTREME behaving as RANDOM at low p and as TOP with high p. However, the reliability of GEBV was higher with RANDOM than with TOP. This disparity between the trend of the gain and the reliability is due to the TOP scheme genotyping the candidates with the greater chances of being selected. The extra gain obtained with TOP increases when the accuracy of the selection criterion to rank candidates to be genotyped increases. CONCLUSIONS: The best strategy to maximise genetic gain when only a proportion of the candidates are to be genotyped is TOP, since it prioritises the genotyping of candidates which are more likely to be selected. However, the strategy with the greatest GEBV reliability does not achieve the largest gain, thus reliability cannot be considered as an absolute and sufficient criterion for determining the scheme which maximises genetic gain.
Subject(s)
Genome , Genomics , Genotype , Phenotype , Reproducibility of ResultsABSTRACT
Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.
Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Genetic Variation , Genetics, Population , Genome, Human , Humans , Ireland , Islands , ScotlandABSTRACT
Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.
Subject(s)
Demography , Genetic Variation/genetics , Genetics, Population , Regulatory Sequences, Nucleic Acid/genetics , 5' Untranslated Regions/genetics , Alleles , Chromatin/genetics , Europe , Exons/genetics , Founder Effect , Genetic Drift , Genome-Wide Association Study , Genomics , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Scotland , Whole Genome SequencingABSTRACT
Genome-wide association studies (GWASs) have become the focus of the statistical analysis of complex traits in humans, successfully shedding light on several aspects of genetic architecture and biological aetiology. Single-nucleotide polymorphisms (SNPs) are usually modelled as having additive, cumulative and independent effects on the phenotype. Although evidently a useful approach, it is often argued that this is not a realistic biological model and that epistasis (that is, the statistical interaction between SNPs) should be included. The purpose of this Review is to summarize recent directions in methodology for detecting epistasis and to discuss evidence of the role of epistasis in human complex trait variation. We also discuss the relevance of epistasis in the context of GWASs and potential hazards in the interpretation of statistical interaction terms.
Subject(s)
Epistasis, Genetic/genetics , Genome, Human/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Algorithms , Genome-Wide Association Study/statistics & numerical data , Genotype , Humans , Linkage Disequilibrium , Models, Biological , PhenotypeABSTRACT
Intramuscular fat (IMF) is one of the main meat quality traits for breeding programmes in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two rabbit populations divergently selected for this trait, and to generate a list of putative candidate genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and 93 540 SNPs. Two methods were used in this research: single marker regressions with the data adjusted by genomic relatedness, and a Bayesian multiple marker regression. Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the genomic variance explained by a genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 and OCU8 presented biological functions related to the control of adipose cell function, lipid binding, transportation and localisation (APOLD1, PLBD1, PDE6H, GPRC5D and GPRC5A) and lipid metabolic processes (MTMR2). The EWSR1 gene, underlying the OCU13 region, is linked to the development of brown adipocytes. The findings suggest that there is a large component of polygenic effect behind the differences in IMF content in these two lines, as the variance explained by most of the windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies would be needed to validate the associations and explore their possible application in selection programmes.
Subject(s)
Adipose Tissue, Brown , Breeding , Genotype , Rabbits/genetics , Animals , Bayes Theorem , Female , Genetic Association Studies/veterinary , Genetic Markers , Linkage Disequilibrium , Male , Meat/analysis , Phenotype , Polymorphism, Single NucleotideABSTRACT
[This corrects the article DOI: 10.1371/journal.pgen.1005804.].
ABSTRACT
Pedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of the phenotypic variation. For personality traits these effects are smaller, with 34-48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence, and education is consistent with mutation-selection balance.
Subject(s)
Intelligence/genetics , Personality/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Cohort Studies , Family , Female , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Pedigree , Phenotype , Polymorphism, Single Nucleotide/genetics , ScotlandABSTRACT
Relatives provide the basic material for the study of inheritance of human disease. However, the methodologies for the estimation of heritability and the interpretation of the results have been controversial. The debate arises from the plethora of methods used, the validity of the methodological assumptions and the inconsistent and sometimes erroneous genetic interpretations made. We will discuss how to estimate disease heritability, how to interpret it, how biases in heritability estimates arise and how heritability relates to other measures of familial disease aggregation.
Subject(s)
Disease/genetics , Bias , Environment , Female , Genetic Association Studies/statistics & numerical data , Genetic Predisposition to Disease , Humans , Linear Models , Male , Models, Genetic , Models, Statistical , Pedigree , Twin Studies as Topic/statistics & numerical dataABSTRACT
Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.
Subject(s)
Environment , Heart/physiology , Metabolism/genetics , Pedigree , Polymorphism, Single Nucleotide/genetics , Computer Simulation , Female , Humans , Inheritance Patterns/genetics , Male , Models, Genetic , Quantitative Trait, Heritable , Sample SizeABSTRACT
Through his own research contributions on the modelling and genetic analysis of quantitative traits and through his former students and postdocs, Robin Thompson has indirectly left a major legacy in human genetics. In this short note, we highlight examples of the long-lasting relevance and impact of Robin's work in human genetics. A lone early study of marker-assisted selection developed many of the tools and approaches later exploited (often after reinvention) by the human genetics community in GWAS studies and for prediction. Furthermore, a particularly clear example of the pervasive impact of Robin's work is that REML has become the default method to estimate variance components and that genetic predictions exploiting linkage disequilibrium in the population are starting to become used in precision medicine applications.
Subject(s)
Genetic Variation , Genetics, Population , Models, Genetic , Multifactorial Inheritance , Quantitative Trait Loci , Computational Biology , Genome-Wide Association Study , Humans , Likelihood Functions , Linkage DisequilibriumABSTRACT
DNA methylation (DNAm) has been linked to changes in chromatin structure, gene expression and disease. The DNAm level can be affected by genetic variation; although, how this differs by CpG dinucleotide density and genic location of the DNAm site is not well understood. Moreover, the effect of disease causing variants on the DNAm level in a tissue relevant to disease has yet to be fully elucidated. To this end, we investigated the phenotypic profiles, genetic effects and regional genomic heritability for 196080 DNAm sites in healthy colorectum tissue from 132 unrelated Colombian individuals. DNAm sites in regions of low-CpG density were more variable, on average more methylated and were more likely to be significantly heritable when compared with DNAm sites in regions of high-CpG density. DNAm sites located in intergenic regions had a higher mean DNAm level and were more likely to be heritable when compared with DNAm sites in the transcription start site (TSS) of a gene expressed in colon tissue. Within CpG-dense regions, the propensity of the DNAm level to be heritable was lower in the TSS of genes expressed in colon tissue than in the TSS of genes not expressed in colon tissue. In addition, regional genetic variation was associated with variation in local DNAm level no more frequently for DNAm sites within colorectal cancer risk regions than it was for DNAm sites outside such regions. Overall, DNAm sites located in different genomic contexts exhibited distinguishable profiles and may have a different biological function.
Subject(s)
Colon/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Rectum/metabolism , Colonic Polyps/genetics , Colonic Polyps/metabolism , CpG Islands/genetics , Female , Gene Expression Regulation , Genome, Human , Genomics , Humans , Male , Oligonucleotide Array Sequence Analysis , Promoter Regions, GeneticABSTRACT
We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge.
Subject(s)
Genomics/methods , Models, Genetic , Phenotype , Body Mass Index , Cohort Studies , Croatia , Databases, Genetic , Empirical Research , Genetic Markers , Genome-Wide Association Study , Genotype , Humans , Lipoproteins, HDL/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sample Size , ScotlandABSTRACT
BACKGROUND: Infectious Pancreatic Necrosis (IPN) is a highly contagious birnavirus disease of farmed salmonid fish, which often causes high levels of morbidity and mortality. A large host genetic component to resistance has been previously described for Atlantic salmon (Salmo salar L.), which mediates high mortality rates in some families and zero mortality in others. However, the molecular and immunological basis for this resistance is not yet fully known. This manuscript describes a global comparison of the gene expression profiles of resistant and susceptible Atlantic salmon fry following challenge with the IPN virus. RESULTS: Salmon fry from two IPNV-resistant and two IPNV-susceptible full sibling families were challenged with the virus and sampled at 1 day, 7 days and 20 days post-challenge. Significant viral titre was observed in both resistant and susceptible fish at all timepoints, although generally at higher levels in susceptible fish. Gene expression profiles combined with gene ontology and pathway analyses demonstrated that while a clear immune response was observed in both resistant and susceptible fish, there were striking differences between the two phenotypes. The susceptible fish showed marked up-regulation of genes related to cytokine activity and inflammatory response that evidently failed to protect against the virus. In contrast, the resistant fish demonstrated a less pronounced immune response including up-regulation of genes relating to the M2 macrophage system. CONCLUSIONS: While only the susceptible phenotype shows appreciable mortality levels, both resistant and susceptible fish can become infected with IPNV. Susceptible fish are characterized by a much larger, yet ineffective, immune response, largely related to cytokine and inflammatory systems. Resistant fish demonstrate a more moderate, putative macrophage-mediated inflammatory response, which may contribute to their survival.
Subject(s)
Birnaviridae Infections/veterinary , Disease Resistance/genetics , Fish Diseases/genetics , Salmo salar/genetics , Salmo salar/immunology , Animals , Birnaviridae Infections/genetics , Birnaviridae Infections/immunology , Cytokines/immunology , Fish Diseases/immunology , Fish Diseases/virology , Infectious pancreatic necrosis virus , Macrophages/immunology , Salmo salar/virology , TranscriptomeABSTRACT
BACKGROUND: Chronic pain is highly prevalent and a significant source of disability, yet its genetic and environmental risk factors are poorly understood. Its relationship with major depressive disorder (MDD) is of particular importance. We sought to test the contribution of genetic factors and shared and unique environment to risk of chronic pain and its correlation with MDD in Generation Scotland: Scottish Family Health Study (GS:SFHS). We then sought to replicate any significant findings in the United Kingdom Biobank study. METHODS AND FINDINGS: Using family-based mixed-model analyses, we examined the contribution of genetics and shared family environment to chronic pain by spouse, sibling, and household relationships. These analyses were conducted in GS:SFHS (n = 23,960), a family- and population-based study of individuals recruited from the Scottish population through their general practitioners. We then examined and partitioned the correlation between chronic pain and MDD and estimated the contribution of genetic factors and shared environment in GS:SFHS. Finally, we used data from two independent genome-wide association studies to test whether chronic pain has a polygenic architecture and examine whether genomic risk of psychiatric disorder predicted chronic pain and whether genomic risk of chronic pain predicted MDD. These analyses were conducted in GS:SFHS and repeated in UK Biobank, a study of 500,000 from the UK population, of whom 112,151 had genotyping and phenotypic data. Chronic pain is a moderately heritable trait (heritability = 38.4%, 95% CI 33.6% to 43.9%) that is significantly concordant in spouses (variance explained 18.7%, 95% CI 9.5% to 25.1%). Chronic pain is positively correlated with depression (ρ = 0.13, 95% CI 0.11 to 0.15, p = 2.72x10-68) and shows a tendency to cluster within families for genetic reasons (genetic correlation = 0.51, 95%CI 0.40 to 0.62, p = 8.24x10-19). Polygenic risk profiles for pain, generated using independent GWAS data, were associated with chronic pain in both GS:SFHS (maximum ß = 6.18x10-2, 95% CI 2.84 x10-2 to 9.35 x10-2, p = 4.3x10-4) and UK Biobank (maximum ß = 5.68 x 10-2, 95% CI 4.70x10-2 to 6.65x10-2, p < 3x10-4). Genomic risk of MDD is also significantly associated with chronic pain in both GS:SFHS (maximum ß = 6.62x10-2, 95% CI 2.82 x10-2 to 9.76 x10-2, p = 4.3x10-4) and UK Biobank (maximum ß = 2.56x10-2, 95% CI 1.62x10-2 to 3.63x10-2, p < 3x10-4). Limitations of the current study include the possibility that spouse effects may be due to assortative mating and the relatively small polygenic risk score effect sizes. CONCLUSIONS: Genetic factors, as well as chronic pain in a partner or spouse, contribute substantially to the risk of chronic pain for an individual. Chronic pain is genetically correlated with MDD, has a polygenic architecture, and is associated with polygenic risk of MDD.
Subject(s)
Chronic Pain/etiology , Depressive Disorder, Major/etiology , Adult , Aged , Chronic Pain/complications , Chronic Pain/genetics , Depressive Disorder, Major/complications , Depressive Disorder, Major/genetics , Family , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Multifactorial Inheritance , Pedigree , Risk Factors , Social Environment , Surveys and Questionnaires , United KingdomABSTRACT
Human serum uric acid concentration (SUA) is a complex trait. A recent meta-analysis of multiple genome-wide association studies (GWAS) identified 28 loci associated with SUA jointly explaining only 7.7% of the SUA variance, with 3.4% explained by two major loci (SLC2A9 and ABCG2). Here we examined whether gene-gene interactions had any roles in regulating SUA using two large GWAS cohorts included in the meta-analysis [the Atherosclerosis Risk in Communities study cohort (ARIC) and the Framingham Heart Study cohort (FHS)]. We found abundant genome-wide significant local interactions in ARIC in the 4p16.1 region located mostly in an intergenic area near SLC2A9 that were not driven by linkage disequilibrium and were replicated in FHS. Taking the forward selection approach, we constructed a model of five SNPs with marginal effects and three epistatic SNP pairs in ARIC-three marginal SNPs were located within SLC2A9 and the remaining SNPs were all located in the nearby intergenic area. The full model explained 1.5% more SUA variance than that explained by the lead SNP alone, but only 0.3% was contributed by the marginal and epistatic effects of the SNPs in the intergenic area. Functional analysis revealed strong evidence that the epistatically interacting SNPs in the intergenic area were unusually enriched at enhancers active in ENCODE hepatic (HepG2, P = 4.7E-05) and precursor red blood (K562, P = 5.0E-06) cells, putatively regulating transcription of WDR1 and SLC2A9. These results suggest that exploring epistatic interactions is valuable in uncovering the complex functional mechanisms underlying the 4p16.1 region.
Subject(s)
Chromosomes, Human, Pair 4 , Epistasis, Genetic , Glucose Transport Proteins, Facilitative/genetics , Quantitative Trait, Heritable , Uric Acid/blood , Cell Line , Computational Biology , Enhancer Elements, Genetic , Female , Genome-Wide Association Study , Genomics , Glucose Transport Proteins, Facilitative/metabolism , Humans , Male , Models, Genetic , Models, Statistical , Polymorphism, Single Nucleotide , Quantitative Trait LociABSTRACT
BACKGROUND: The Generation Scotland Scottish Family Health Study (GS:SFHS) includes 23,960 participants from across Scotland with records for many health-related traits and environmental covariates. Genotypes at ~700 K SNPs are currently available for 10,000 participants. The cohort was designed as a resource for genetic and health related research and the study of complex traits. In this study we developed a suite of analyses to disentangle the genomic differentiation within GS:SFHS individuals to describe and optimise the sample and methods for future analyses. RESULTS: We combined the genotypic information of GS:SFHS with 1092 individuals from the 1000 Genomes project and estimated their genomic relationships. Then, we performed Principal Component Analyses of the resulting relationships to investigate the genomic origin of different groups. We characterised two groups of individuals: those with a few sparse rare markers in the genome, and those with several large rare haplotypes which might represent relatively recent exogenous ancestors. We identified some individuals with likely Italian ancestry and a group with some potential African/Asian ancestry. An analysis of homozygosity in the GS:SFHS sample revealed a very similar pattern to other European populations. We also identified an individual carrying a chromosome 1 uniparental disomy. We found evidence of local geographic stratification within the population having impact on the genomic structure. CONCLUSIONS: These findings illuminate the history of the Scottish population and have implications for further analyses such as the study of the contributions of common and rare variants to trait heritabilities and the evaluation of genomic and phenotypic prediction of disease.
Subject(s)
Asian People/genetics , Black People/genetics , Quantitative Trait, Heritable , White People/genetics , Female , Genome, Human , Genotype , Humans , Male , Models, Genetic , Phylogeography , Polymorphism, Single Nucleotide , Population Dynamics , Principal Component Analysis , Scotland/ethnologyABSTRACT
BACKGROUND: A major step towards the success of chickens as a domesticated species was the separation between maternal care and reproduction. Artificial incubation replaced the natural maternal behaviour of incubation and, thus, in certain breeds, it became possible to breed chickens with persistent egg production and no incubation behaviour; a typical example is the White Leghorn strain. Conversely, some strains, such as the Silkie breed, are prized for their maternal behaviour and their willingness to incubate eggs. This is often colloquially known as broodiness. RESULTS: Using an F2 linkage mapping approach and a cross between White Leghorn and Silkie chicken breeds, we have mapped, for the first time, genetic loci that affect maternal behaviour on chromosomes 1, 5, 8, 13, 18 and 19 and linkage group E22C19W28. Paradoxically, heterozygous and White Leghorn homozygous genotypes were associated with an increased incidence of incubation behaviour, which exceeded that of the Silkie homozygotes for most loci. In such cases, it is likely that the loci involved are associated with increased egg production. Increased egg production increases the probability of incubation behaviour occurring because egg laying must precede incubation. For the loci on chromosomes 8 and 1, alleles from the Silkie breed promote incubation behaviour and influence maternal behaviour (these explain 12 and 26% of the phenotypic difference between the two founder breeds, respectively). CONCLUSIONS: The over-dominant locus on chromosome 5 coincides with the strongest selective sweep reported in chickens and together with the loci on chromosomes 1 and 8, they include genes of the thyrotrophic axis. This suggests that thyroid hormones may play a critical role in the loss of incubation behaviour and the improved egg laying behaviour of the White Leghorn breed. Our findings support the view that loss of maternal incubation behaviour in the White Leghorn breed is the result of selection for fertility and egg laying persistency and against maternal incubation behaviour.
Subject(s)
Behavior, Animal/physiology , Chickens/genetics , Chromosome Mapping , Eggs , Maternal Behavior/physiology , Quantitative Trait Loci , Animals , Chickens/physiology , Crosses, Genetic , Female , Genotyping Techniques , Polymorphism, Single NucleotideABSTRACT
Modern commercial chickens have been bred for one of two specific purposes: meat production (broilers) or egg production (layers). This has led to large phenotypic changes, so that the genomic signatures of selection may be detectable using statistical techniques. Genetic differentiation between nine distinct broiler lines was calculated using Weir and Cockerham's pairwise FST estimator for 11 003 genome-wide markers to identify regions showing evidence of differential selection across lines. Differentiation measures were averaged into overlapping sliding windows for each line, and a permutation approach was used to determine the significance of each window. A total of 51 regions were found to show significant differentiation between the lines. Several lines were consistently found to share significant regions, suggesting that the pattern of line divergence is related to selection for broiler traits. The majority of the 51 regions contain QTL relating to broiler traits, but only five of them were found to be significantly enriched for broiler QTL, including a region on chromosome 27 containing 39 broiler QTL and 114 genes. Additionally, a number of these regions have been identified by other selection mapping studies. This study has identified a large number of potential selection signatures, and further tests with higher-density marker data may narrow these regions down to individual genes.
Subject(s)
Breeding , Chickens/genetics , Quantitative Trait Loci , Selection, Genetic , Animals , Chromosome Mapping/veterinary , Genotype , Polymorphism, Single NucleotideABSTRACT
BACKGROUND: Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk of boar taint. There is evidence for genetic variation in the predisposition to boar taint.A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred Danish Landrace boars with high levels of skatole in fat (>0.3 µg/g), were each matched with a litter mate with low levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using the Illumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on 938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For androstenone, a 'regional heritability approach' combining information from multiple SNPs was used to estimate the genetic variation attributable to individual autosomes. RESULTS: A highly significant association was found between variation in skatole levels and SNPs within the CYP2E1 gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously. Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using GWAS. CONCLUSIONS: Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace pigs. The study agrees with evidence that the CYP2E1 gene has effects on skatole breakdown in the liver. Autosomal heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for GWAS significance.