Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 159(7): 1578-90, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525876

ABSTRACT

Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1ß. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.


Subject(s)
Adaptive Immunity , Aminopeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Glycolysis , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Amino Acid Sequence , Aminopeptidases/chemistry , Animals , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Female , Humans , Immunologic Deficiency Syndromes/immunology , Lysosomes/metabolism , Male , Models, Molecular , Molecular Sequence Data , Pedigree , Sequence Alignment , Serine Endopeptidases/chemistry
2.
J Neurosci Res ; 101(2): 263-277, 2023 02.
Article in English | MEDLINE | ID: mdl-36353842

ABSTRACT

Substantia nigra (SN) hyperechogenicity, viewed with transcranial ultrasound, is a risk marker for Parkinson's disease. We hypothesized that SN hyperechogenicity in healthy adults aged 50-70 years is associated with reduced short-interval intracortical inhibition in primary motor cortex, and that the reduced intracortical inhibition is associated with neurochemical markers of activity in the pre-supplementary motor area (pre-SMA). Short-interval intracortical inhibition and intracortical facilitation in primary motor cortex was assessed with paired-pulse transcranial magnetic stimulation in 23 healthy adults with normal (n = 14; 61 ± 7 yrs) or abnormally enlarged (hyperechogenic; n = 9; 60 ± 6 yrs) area of SN echogenicity. Thirteen of these participants (7 SN- and 6 SN+) also underwent brain magnetic resonance spectroscopy to investigate pre-SMA neurochemistry. There was no relationship between area of SN echogenicity and short-interval intracortical inhibition in the ipsilateral primary motor cortex. There was a significant positive relationship, however, between area of echogenicity in the right SN and the magnitude of intracortical facilitation in the right (ipsilateral) primary motor cortex (p = .005; multivariate regression), evidenced by the amplitude of the conditioned motor evoked potential (MEP) at the 10-12 ms interstimulus interval. This relationship was not present on the left side. Pre-SMA glutamate did not predict primary motor cortex inhibition or facilitation. The results suggest that SN hyperechogenicity in healthy older adults may be associated with changes in excitability of motor cortical circuitry. The results advance understanding of brain changes in healthy older adults at risk of Parkinson's disease.


Subject(s)
Cortical Excitability , Motor Cortex , Parkinson Disease , Humans , Aged , Motor Cortex/diagnostic imaging , Parkinson Disease/diagnostic imaging
3.
Mov Disord ; 35(2): 344-349, 2020 02.
Article in English | MEDLINE | ID: mdl-31674060

ABSTRACT

BACKGROUND: Melatonin may reduce REM-sleep behavior disorder (RBD) symptoms in Parkinson's disease (PD), though robust clinical trials are lacking. OBJECTIVE: To assess the efficacy of prolonged-release (PR) melatonin for RBD in PD. METHODS: Randomized, double-blind, placebo-controlled, parallel-group trial with an 8-week intervention and 4-week observation pre- and postintervention (ACTRN12613000648729). Thirty PD patients with rapid eye movement sleep behavior disorder were randomized to 4 mg of prolonged-release melatonin (Circadin) or matched placebo, ingested orally once-daily before bedtime. Primary outcome was the aggregate of rapid eye movement sleep behavior disorder incidents averaged over weeks 5 to 8 of treatment captured by a weekly diary. Data were included in a mixed-model analysis of variance (n = 15 per group). RESULTS: No differences between groups at the primary endpoint (3.4 events/week melatonin vs. 3.6 placebo; difference, 0.2; 95% confidence interval = -3.2 to 3.6; P = 0.92). Adverse events included mild headaches, fatigue, and morning sleepiness (n = 4 melatonin; n = 5 placebo). CONCLUSION: Prolonged-release melatonin 4 mg did not reduce rapid eye movement sleep behavior disorder in PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Eye Movements/drug effects , Melatonin/therapeutic use , Parkinson Disease/drug therapy , REM Sleep Behavior Disorder/drug therapy , Aged , Clonazepam/therapeutic use , Double-Blind Method , Fatigue/drug therapy , Female , Humans , Male , Melatonin/metabolism , Middle Aged , Polysomnography/methods , REM Sleep Behavior Disorder/diagnosis
4.
Med Teach ; 42(3): 266-271, 2020 03.
Article in English | MEDLINE | ID: mdl-30661425

ABSTRACT

Many health professional schools may be investing time and resources on dedicated educational spaces intended to promote collaborative learning. Alone, innovative physical space or technologies are not sufficient to ensure success in this. Lesson plans informed by collaborative praxis, individual motivation, faculty development, learner feedback, and team interactions also play a necessary and substantial role. We have used faculty observations, quantitative and qualitative student evaluation data, and the existing educational literature to provide twelve tips on leveraging curricular content, activity setup, physical space, learner behavior, and faculty facilitation to make the most of collaborative learning spaces.


Subject(s)
Curriculum , Motivation , Faculty , Feedback , Humans
5.
Mov Disord ; 34(9): 1374-1380, 2019 09.
Article in English | MEDLINE | ID: mdl-31242336

ABSTRACT

BACKGROUND: Although motor abnormalities have been flagged as potentially the most sensitive and specific clinical features for predicting the future progression to Parkinson's disease, little work has been done to characterize gait and balance impairments in idiopathic rapid eye movement sleep behavior disorder (iRBD). OBJECTIVE: The objective of this study was to quantitatively determine any static balance as well as gait impairments across the 5 independent domains of gait in polysomnography-confirmed iRBD patients using normal, fast-paced, and dual-task walking conditions. METHODS: A total of 38 participants (24 iRBD, 14 healthy controls) completed the following 5 different walking trials across a pressure sensor carpet: (1) normal pace, (2) fast pace, (3) while counting backward from 100 by 1s, (4) while naming as many animals as possible, (5) while subtracting 7s from 100. RESULTS: Although no gait differences were found between the groups during normal walking, there were significant differences between groups under the fast-paced and dual-task gait conditions. Specifically, in response to the dual tasking, healthy controls widened their step width without changing step width variability, whereas iRBD patients did not widen their step width but, rather, significantly increased their step width variability. Similarly, changes between the groups were observed during fast-paced walking wherein the iRBD patients demonstrated greater step length asymmetry when compared with controls. CONCLUSIONS: This study demonstrates that iRBD patients have subtle gait impairments, which likely reflect early progressive degeneration in brainstem regions that regulate both REM sleep and gait coordination. Such gait assessments may be useful as a diagnostic preclinical screening tool for future fulminant gait abnormalities for trials of disease-preventive agents. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Gait Disorders, Neurologic/etiology , REM Sleep Behavior Disorder/complications , Vertigo/etiology , Adult , Aged , Cognition , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Polysomnography , Postural Balance , Psychomotor Performance
6.
Brain ; 141(4): 1145-1160, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29444207

ABSTRACT

Freezing of gait is a complex, heterogeneous, and highly variable phenomenon whose pathophysiology and neural signature remains enigmatic. Evidence suggests that freezing is associated with impairments across cognitive, motor and affective domains; however, most research to date has focused on investigating one axis of freezing of gait in isolation. This has led to inconsistent findings and a range of different pathophysiological models of freezing of gait, due in large part to the tendency for studies to investigate freezing of gait as a homogeneous entity. To investigate the neural mechanisms of this heterogeneity, we used an established virtual reality paradigm to elicit freezing behaviour in 41 Parkinson's disease patients with freezing of gait and examined individual differences in the component processes (i.e. cognitive, motor and affective function) that underlie freezing of gait in conjunction with task-based functional MRI. First, we combined three unique components of the freezing phenotype: impaired set-shifting ability, step time variability, and self-reported anxiety and depression in a principal components analysis to estimate the severity of freezing behaviour with a multivariate approach. By combining these measures, we were then able to interrogate the pattern of task-based functional connectivity associated with freezing (compared to normal foot tapping) in a sub-cohort of 20 participants who experienced sufficient amounts of freezing during task functional MRI. Specifically, we used the first principal component from our behavioural analysis to classify patterns of functional connectivity into those that were associated with: (i) increased severity; (ii) increased compensation; or (iii) those that were independent of freezing severity. Coupling between the cognitive and limbic networks was associated with 'worse freezing severity', whereas anti-coupling between the putamen and the cognitive and limbic networks was related to 'increased compensation'. Additionally, anti-coupling between cognitive cortical regions and the caudate nucleus were 'independent of freezing severity' and thus may represent common neural underpinnings of freezing that are unaffected by heterogenous factors. Finally, we related these connectivity patterns to each of the individual components (cognitive, motor, affective) in turn, thus exposing latent heterogeneity in the freezing phenotype, while also identifying critical functional network signatures that may represent potential targets for novel therapeutic intervention. In conclusion, our findings provide confirmatory evidence for systems-level impairments in the pathophysiology of freezing of gait and further advance our understanding of the whole-brain deficits that mediate symptom expression in Parkinson's disease.


Subject(s)
Brain/diagnostic imaging , Gait Disorders, Neurologic/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Aged , Cognition Disorders/diagnostic imaging , Cognition Disorders/etiology , Female , Gait Disorders, Neurologic/etiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Oxygen/blood , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Surveys and Questionnaires , User-Computer Interface
7.
Mov Disord ; 33(7): 1174-1178, 2018 07.
Article in English | MEDLINE | ID: mdl-30153383

ABSTRACT

BACKGROUND: The purpose of this study is to identify and characterize subtypes of freezing of gait by using a novel questionnaire designed to delineate freezing patterns based on self-reported and behavioral gait assessment. METHODS: A total of 41 Parkinson's patients with freezing completed the Characterizing Freezing of Gait questionnaire that identifies situations that exacerbate freezing. This instrument underwent examination for construct validity and internal consistency, after which a data-driven clustering approach was employed to identify distinct patterns amongst individual responses. Behavioral freezing assessments in both dopaminergic states were compared across 3 identified subgroups. RESULTS: This novel questionnaire demonstrated construct validity (severity scores correlated with percentage of time frozen; r = 0.54) and internal consistency (Cronbach's α = .937), and thus demonstrated promising utility for identifying patterns of freezing that are independently related to motor, anxiety, and attentional impairments. CONCLUSIONS: Patients with freezing may be dissociable based on underlying neurobiological underpinnings that would have significant implications for targeting future treatments. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Freezing Reaction, Cataleptic/physiology , Gait Disorders, Neurologic , Parkinson Disease/complications , Aged , Cluster Analysis , Female , Gait Disorders, Neurologic/classification , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Neurologic Examination , Severity of Illness Index , Surveys and Questionnaires , Walking
8.
Mov Disord ; 33(1): 128-135, 2018 01.
Article in English | MEDLINE | ID: mdl-29150872

ABSTRACT

BACKGROUND: Freezing of gait is a disabling symptom of Parkinson's disease that ultimately affects approximately 80% of patients, yet very little research has focused on predicting the onset of freezing of gait and tracking the longitudinal progression of symptoms prior to its onset. The objective of the current study was to examine longitudinal data spanning the transition period when patients with PD developed freezing of gait to identify symptoms that may precede freezing and create a prediction model that identifies those "at risk" for developing freezing of gait in the year to follow. METHODS: Two hundred and twenty-one patients with PD were divided into 3 groups (88 nonfreezers, 41 transitional freezers, and 92 continuing freezers) based on their responses to the validated Freezing of Gait-Questionnaire item 3 at baseline and follow-up. Critical measures across motor, cognitive, mood, and sleep domains were assessed at 2 times approximately 1 year apart. RESULTS: A logistic regression model that included age, disease duration, gait symptoms, motor phenotype, attentional set-shifting, and mood measures could predict with 70% and 90% accuracy those patients who would and would not develop, respectively, freezing of gait over the next year. Notably, the Freezing of Gait-Questionnaire total and the anxiety section of the Hospital Anxiety and Depression Scale were the strongest predictors and alone could significantly predict if one might develop freezing of gait in the next 15 months with 82% accuracy. CONCLUSIONS: Our results suggest that it is possible to identify the majority of patients who will develop freezing of gait in the following year, potentially allowing targeted interventions to delay or possibly even prevent the onset of freezing. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Freezing Reaction, Cataleptic/physiology , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Parkinson Disease/complications , Affective Symptoms/diagnosis , Affective Symptoms/etiology , Aged , Aged, 80 and over , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Predictive Value of Tests , Regression Analysis , Retrospective Studies , Severity of Illness Index , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/etiology
9.
Neuroimage ; 152: 207-220, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28263926

ABSTRACT

Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor ('walk' condition) or watched the screen while a researcher operated the paradigm from outside the scanner ('watch' condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic "off" state. During the "off" state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=-0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653, p<0.001). Overall, this study demonstrates that dopamine ameliorates gait automaticity in Parkinson's disease by altering striatal, limbic and cerebellar processing, thereby informing future therapeutic avenues for gait and falls prevention.


Subject(s)
Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Corpus Striatum/physiopathology , Dopamine/physiology , Gait , Parkinson Disease/physiopathology , Attention/physiology , Brain Mapping , Humans , Levodopa/therapeutic use , Magnetic Resonance Imaging , Motor Activity , Parkinson Disease/drug therapy , Virtual Reality
10.
J Neural Transm (Vienna) ; 123(5): 503-7, 2016 05.
Article in English | MEDLINE | ID: mdl-26940598

ABSTRACT

Mechanistic insights into visual hallucinations (VH) in Parkinson's disease (PD) have suggested a role for impaired attentional processes. The current study tested 25 PD patients with and 28 PD patients without VH on the attentional network test. Hallucinators had significantly lower accuracy rates compared to non-hallucinators, but no differences were found in reaction times. This suggests that hallucinators show deficits in attentional processes and conflict monitoring. Our findings provide novel behavioural insights that dovetail with current neurobiological frameworks of VH.


Subject(s)
Attention Deficit Disorder with Hyperactivity/etiology , Hallucinations/complications , Parkinson Disease/complications , Aged , Analysis of Variance , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Reaction Time/physiology , Statistics, Nonparametric
12.
J Neural Transm (Vienna) ; 122(5): 653-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25047910

ABSTRACT

Freezing of gait is a frequent and disabling symptom experienced by many patients with Parkinson's disease. A number of executive deficits have been shown to be associated with the phenomenon suggesting a common underlying pathophysiology, which as of yet remains unclear. Neuroimaging studies have also implicated the role of the cognitive control network in patients with freezing. To explore this concept, the current study examined error-monitoring as a measure of cognitive control. Thirty-four patients with and 38 without freezing of gait, who were otherwise well matched on disease severity, completed a colour-word interference task that allowed the specific assessment of error monitoring during conflict. Whilst both groups performed colour-naming and word-reading tasks equally well, those patients with freezing showed a pattern between conditions whereby they were better able to monitor performance and self-correct errors in the pure inhibition task but not after a switching rule was introduced. The novel results shown here provide insight into possible pathophysiological mechanisms involved in cognitive load and error monitoring in patients with freezing of gait. These results provide further evidence for the role of functional frontostriatal circuitry impairments in patients with freezing of gait and have implications for future studies and possible therapeutic interventions.


Subject(s)
Executive Function , Gait Disorders, Neurologic/complications , Gait Disorders, Neurologic/psychology , Inhibition, Psychological , Parkinson Disease/complications , Parkinson Disease/psychology , Aged , Cognition , Cohort Studies , Female , Gait Disorders, Neurologic/physiopathology , Humans , Male , Parkinson Disease/physiopathology , Stroop Test
13.
Mol Carcinog ; 52(9): 715-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22549810

ABSTRACT

The majority of ovarian cancers over-express the estrogen receptor (ERα) and grow in response to estrogens. We previously demonstrated that ER induction of the chemokine CXCL12 (stromal cell-derived factor-1) is required for estradiol (E2)-stimulated proliferation of human ovarian carcinoma cells. In the current study, we report that known "endocrine disrupting chemicals" (EDCs) display mitogenic activities in ovarian cancer cells via their ability to activate the ER and upregulate CXCL12 expression. Notably, the EDCs genistein, bisphenol A and HPTE stimulated both cell proliferation and induction of CXCL12 mRNA and protein in a manner comparable to estradiol. The effects were completely attenuated by the ER antagonist ICI 182,780, revealing that observed activities of these agents were receptor-mediated. In cell proliferation assays, the mitogenic effects of estradiol and EDCs were obviated by siRNAs targeting CXCL12 and restored upon addition of exogenous CXCL12. Furthermore, an inhibitor to the CXCL12 receptor CXCR4 completely attenuated growth-stimulatory effects of E2 and EDCs. These studies highlight a potential role of EDCs possessing estrogenic activities in the etiology of ovarian cancer. Moreover, they suggest that the ER-CXCL12-CXCR4 signaling axis may represent a promising target for development of therapeutics for ER+ ovarian cancers.


Subject(s)
Chemokine CXCL12/metabolism , Endocrine Disruptors/pharmacology , Ovarian Neoplasms/pathology , Receptors, CXCR4/metabolism , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokine CXCL12/genetics , Estradiol/pharmacology , Female , Gene Expression/drug effects , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Receptors, CXCR4/genetics , Receptors, Estrogen/genetics , Up-Regulation/drug effects
14.
Acta Psychol (Amst) ; 232: 103818, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36577334

ABSTRACT

Novel events catch our attention, which can influence performance of a task. Whether this attentional capture by novelty benefits or impairs performance depends on several factors, such as the relevance of the stimulus, task requirements, and the timing of the event. Additionally, it has been argued that novel stimuli can hold intrinsic reward value, which may directly affect approach motivation, similar to positive valence stimuli. This link between novelty and approach/avoid behaviour has not been investigated directly. Here, we investigated whether stimulus novelty interacts with response behaviour in an approach/avoidance task, and whether these effects depend on the task relevance of novelty and stimulus timing. In experiment 1, participants gave an approach or avoid response dependent on a shape (diamond or square) presented at different stimulus onset asynchronies (SOA) following a novel or familiar scene (target-irrelevant novelty). In experiment 2, participants had to approach or avoid a novel or familiar image depending on the content (indoor/outdoor; target-related novelty). A shape was presented at different SOA. Results of a linear mixed model showed novelty-induced performance costs as demonstrated by longer RT and lower accuracy when novelty was target-relevant, likely due to attentional lingering at novel images. When images were target-irrelevant, approach but not avoid responses were faster for familiar versus novel images at 200 ms SOA only. Thus, novelty had a differentially pronounced detrimental effect on performance. These observations confirm that processing of novel stimuli generally depends on stimulus relevance, and tentatively suggests that differential processing of novel and familiar images is intensified by motivated approach behaviour.


Subject(s)
Attention , Motivation , Humans , Attention/physiology , Reward , Choice Behavior , Reaction Time/physiology
15.
Dev Sci ; 14(1): 148-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21159096

ABSTRACT

This neuroimaging study examines the development of cognitive flexibility using the Change task in a sample of youths and adults. The Change task requires subjects to inhibit a prepotent response and substitute an alternative response, and the task incorporates an algorithm that adjusts task difficulty in response to subject performance. Data from both groups combined show a network of prefrontal and parietal areas that are active during the task. For adults vs. youths, a distributed network was more active for successful change trials versus go, baseline, or unsuccessful change trials. This network included areas involved in rule representation, retrieval (lateral PFC), and switching (medial PFC and parietal regions). These results are consistent with data from previous task-switching experiments and inform developmental understandings of cognitive flexibility.


Subject(s)
Cognition/physiology , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Psychomotor Performance , Adolescent , Adult , Behavior , Brain Mapping , Child , Executive Function , Female , Humans , Magnetic Resonance Imaging , Male , Task Performance and Analysis
17.
Front Pharmacol ; 12: 633680, 2021.
Article in English | MEDLINE | ID: mdl-33833683

ABSTRACT

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.

18.
Mol Pharmacol ; 77(2): 195-201, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19917880

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities and those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR is its ability to promote cell cycle progression in the absence of exogenous ligands, whereas treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G(1) to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D-cyclin-dependent kinase (CDK) 4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and cyclin D1 (CCND1) were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle, and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G(1) cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro-translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR/CDK4/CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G(1) cell cycle arrest.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/physiology , Cyclin-Dependent Kinase 4/physiology , Receptors, Aryl Hydrocarbon/physiology , Cell Cycle/drug effects , Cell Line, Tumor , Female , Humans , Polychlorinated Dibenzodioxins/pharmacology , Protein Binding/drug effects , Protein Binding/physiology
19.
Cortex ; 125: 233-245, 2020 04.
Article in English | MEDLINE | ID: mdl-32058090

ABSTRACT

Visual hallucinations are an underappreciated symptom affecting the majority of patients during the natural history of Parkinson's disease. Little is known about other forms of abstract and internally generated cognition - such as mind-wandering - in this population, but emerging evidence suggests that an interplay between the brain's primary visual and default networks might play a crucial role in both internally generated imagery and hallucinations. Here, we explored the association between mind-wandering and visual hallucinations in Parkinson's disease, and their relationship with brain network coupling. We administered a validated thought-sampling task to 38 Parkinson's disease patients (18 with hallucinations; 20 without) and 40 controls, to test the hypothesis that individuals with hallucinations experience an increased frequency of mind-wandering. Group differences in the association between mind-wandering frequency and brain network coupling were also examined using resting state functional magnetic resonance imaging. Our results showed that patients with hallucinations exhibited significantly higher mind-wandering frequencies compared to non-hallucinators, who in turn had reduced levels of mind-wandering relative to controls. At the level of brain networks, inter-network connectivity and seed-to-voxel analyses identified that increased mind-wandering in the hallucinating versus non-hallucinating group was associated with greater coupling between the primary visual cortex and dorsal default network. Taken together, our results suggest a relative preservation of mind-wandering in Parkinson's disease patients who experience visual hallucinations, which is associated with increased visual cortex-default network coupling. We propose that the preservation of florid abstract and internally generated cognition in the context of the Parkinson's disease can contribute to visual hallucinations, whereas healthy individuals experience only the vivid images of the mind's eye. These findings refine current models of visual hallucinations by identifying a specific cognitive phenomenon and neural substrate consistent with the top-down influences over perception that have been implicated in hallucinations across neuropsychiatric disorders.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Brain Mapping , Hallucinations/diagnostic imaging , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging
20.
Res Sq ; 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32702719

ABSTRACT

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. Currently, there are no pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We explore several plausible avenues of activity including antiviral and host-mediated actions. We propose that the principal famotidine mechanism of action for COVID-19 involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release.

SELECTION OF CITATIONS
SEARCH DETAIL