Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 604(7906): 502-508, 2022 04.
Article in English | MEDLINE | ID: mdl-35396580

ABSTRACT

Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.


Subject(s)
Genome-Wide Association Study , Schizophrenia , Alleles , Genetic Predisposition to Disease/genetics , Genomics , Humans , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics
2.
Hum Mol Genet ; 29(1): 159-167, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31691811

ABSTRACT

Schizophrenia is a complex highly heritable disorder. Genome-wide association studies (GWAS) have identified multiple loci that influence the risk of developing schizophrenia, although the causal variants driving these associations and their impacts on specific genes are largely unknown. We identify a significant correlation between schizophrenia risk and expression at 89 genes in the dorsolateral prefrontal cortex (P ≤ 9.43 × 10-6), including 20 novel genes. Genes whose expression correlate with schizophrenia were enriched for those involved in abnormal CNS synaptic transmission (PFDR = 0.02) and antigen processing and presentation of peptide antigen via MHC class I (PFDR = 0.02). Within the CNS synaptic transmission set, we identify individual significant candidate genes to which we assign direction of expression changes in schizophrenia. The findings provide strong candidates for experimentally probing the molecular basis of synaptic pathology in schizophrenia.


Subject(s)
Schizophrenia/genetics , Schizophrenia/pathology , Transcriptome/genetics , Brain/metabolism , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
3.
Mol Psychiatry ; 26(6): 2082-2088, 2021 06.
Article in English | MEDLINE | ID: mdl-32366953

ABSTRACT

The majority of common risk alleles identified for neuropsychiatric disorders reside in noncoding regions of the genome and are therefore likely to impact gene regulation. However, the genes that are primarily affected and the nature and developmental timing of these effects remain unclear. Given the hypothesized role for early neurodevelopmental processes in these conditions, we here define genetic predictors of gene expression in the human fetal brain with which we perform transcriptome-wide association studies (TWASs) of attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, bipolar disorder, major depressive disorder, and schizophrenia. We identify prenatal cis-regulatory effects on 63 genes and 166 individual transcripts associated with genetic risk for these conditions. We observe pleiotropic effects of expression predictors for a number of genes and transcripts, including those of decreased DDHD2 expression in association with risk for schizophrenia and bipolar disorder, increased expression of a ST3GAL3 transcript with risk for schizophrenia and ADHD, and increased expression of an XPNPEP3 transcript with risk for schizophrenia, bipolar disorder, and major depression. For the protocadherin alpha cluster genes PCDHA7 and PCDHA8, we find that predictors of low expression are associated with risk for major depressive disorder while those of higher expression are associated with risk for schizophrenia. Our findings support a role for altered gene regulation in the prenatal brain in susceptibility to various neuropsychiatric disorders and prioritize potential risk genes for further neurobiological investigation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Depressive Disorder, Major , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Brain , Depressive Disorder, Major/genetics , Female , Gene Expression , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Phospholipases , Pregnancy
4.
PLoS Genet ; 14(12): e1007833, 2018 12.
Article in English | MEDLINE | ID: mdl-30507971

ABSTRACT

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterised by progressive destruction of intrahepatic bile ducts. The strongest genetic association is with HLA-DQA1*04:01, but at least three additional independent HLA haplotypes contribute to susceptibility. We used dense single nucleotide polymorphism (SNP) data in 2861 PBC cases and 8514 controls to impute classical HLA alleles and amino acid polymorphisms using state-of-the-art methodologies. We then demonstrated through stepwise regression that association in the HLA region can be largely explained by variation at five separate amino acid positions. Three-dimensional modelling of protein structures and calculation of electrostatic potentials for the implicated HLA alleles/amino acid substitutions demonstrated a correlation between the electrostatic potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/amino acid substitutions conferring PBC susceptibility/protection, highlighting potential new avenues for future functional investigation.


Subject(s)
HLA Antigens/genetics , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/immunology , Major Histocompatibility Complex , Amino Acid Sequence , Amino Acid Substitution , Genes, MHC Class II , Genetic Association Studies , Genetic Predisposition to Disease , HLA Antigens/chemistry , HLA-C Antigens/genetics , HLA-DP beta-Chains/chemistry , HLA-DP beta-Chains/genetics , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Humans , Models, Genetic , Models, Molecular , Polymorphism, Single Nucleotide , Protein Conformation , Regression Analysis , Static Electricity
5.
Pharmacogenomics J ; 20(2): 329-341, 2020 04.
Article in English | MEDLINE | ID: mdl-30700811

ABSTRACT

Antidepressants demonstrate modest response rates in the treatment of major depressive disorder (MDD). Despite previous genome-wide association studies (GWAS) of antidepressant treatment response, the underlying genetic factors are unknown. Using prescription data in a population and family-based cohort (Generation Scotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of (a) antidepressant treatment resistance and (b) stages of antidepressant resistance by inferring antidepressant switching as non-response to treatment. GWAS were conducted separately for antidepressant treatment resistance in GS:SFHS and the Genome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed (meta-analysis n = 4213, cases = 358). For stages of antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-set enrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We did not identify any significant loci, genes or gene sets associated with antidepressant treatment resistance or stages of resistance. Significant positive genetic correlations of antidepressant treatment resistance and stages of resistance with neuroticism, psychological distress, schizotypy and mood disorder traits were identified. These findings suggest that larger sample sizes are needed to identify the genetic architecture of antidepressant treatment response, and that population-based observational studies may provide a tractable approach to achieving the necessary statistical power.


Subject(s)
Antidepressive Agents/therapeutic use , Data Analysis , Depressive Disorder, Treatment-Resistant/genetics , Genome-Wide Association Study/methods , Health Services , Population Surveillance , Adult , Cohort Studies , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/epidemiology , Drug Prescriptions , Female , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Scotland/epidemiology
6.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 227-234, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27480393

ABSTRACT

Type II diabetes (T2D) and major depressive disorder (MDD) are often co-morbid. The reasons for this co-morbidity are unclear. Some studies have highlighted the importance of environmental factors and a causal relationship between T2D and MDD has also been postulated. In the present study we set out to investigate the shared aetiology between T2D and MDD using Mendelian randomization in a population based sample, Generation Scotland: the Scottish Family Health Study (N = 21,516). Eleven SNPs found to be associated with T2D were tested for association with MDD and psychological distress (General Health Questionnaire scores). We also assessed causality and genetic overlap between T2D and MDD using polygenic risk scores (PRS) assembled from the largest available GWAS summary statistics to date. No single T2D risk SNP was associated with MDD in the MR analyses and we did not find consistent evidence of genetic overlap between MDD and T2D in the PRS analyses. Linkage disequilibrium score regression analyses supported these findings as no genetic correlation was observed between T2D and MDD (rG = 0.0278 (S.E. 0.11), P-value = 0.79). As suggested by previous studies, T2D and MDD covariance may be better explained by environmental factors. Future studies would benefit from analyses in larger cohorts where stratifying by sex and looking more closely at MDD cases demonstrating metabolic dysregulation is possible. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.


Subject(s)
Depressive Disorder, Major/etiology , Diabetes Mellitus, Type 2/etiology , Cohort Studies , Comorbidity , Depressive Disorder, Major/genetics , Diabetes Mellitus, Type 2/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Risk Assessment , Risk Factors , Scotland
7.
PLoS Med ; 13(8): e1002090, 2016 08.
Article in English | MEDLINE | ID: mdl-27529168

ABSTRACT

BACKGROUND: Chronic pain is highly prevalent and a significant source of disability, yet its genetic and environmental risk factors are poorly understood. Its relationship with major depressive disorder (MDD) is of particular importance. We sought to test the contribution of genetic factors and shared and unique environment to risk of chronic pain and its correlation with MDD in Generation Scotland: Scottish Family Health Study (GS:SFHS). We then sought to replicate any significant findings in the United Kingdom Biobank study. METHODS AND FINDINGS: Using family-based mixed-model analyses, we examined the contribution of genetics and shared family environment to chronic pain by spouse, sibling, and household relationships. These analyses were conducted in GS:SFHS (n = 23,960), a family- and population-based study of individuals recruited from the Scottish population through their general practitioners. We then examined and partitioned the correlation between chronic pain and MDD and estimated the contribution of genetic factors and shared environment in GS:SFHS. Finally, we used data from two independent genome-wide association studies to test whether chronic pain has a polygenic architecture and examine whether genomic risk of psychiatric disorder predicted chronic pain and whether genomic risk of chronic pain predicted MDD. These analyses were conducted in GS:SFHS and repeated in UK Biobank, a study of 500,000 from the UK population, of whom 112,151 had genotyping and phenotypic data. Chronic pain is a moderately heritable trait (heritability = 38.4%, 95% CI 33.6% to 43.9%) that is significantly concordant in spouses (variance explained 18.7%, 95% CI 9.5% to 25.1%). Chronic pain is positively correlated with depression (ρ = 0.13, 95% CI 0.11 to 0.15, p = 2.72x10-68) and shows a tendency to cluster within families for genetic reasons (genetic correlation = 0.51, 95%CI 0.40 to 0.62, p = 8.24x10-19). Polygenic risk profiles for pain, generated using independent GWAS data, were associated with chronic pain in both GS:SFHS (maximum ß = 6.18x10-2, 95% CI 2.84 x10-2 to 9.35 x10-2, p = 4.3x10-4) and UK Biobank (maximum ß = 5.68 x 10-2, 95% CI 4.70x10-2 to 6.65x10-2, p < 3x10-4). Genomic risk of MDD is also significantly associated with chronic pain in both GS:SFHS (maximum ß = 6.62x10-2, 95% CI 2.82 x10-2 to 9.76 x10-2, p = 4.3x10-4) and UK Biobank (maximum ß = 2.56x10-2, 95% CI 1.62x10-2 to 3.63x10-2, p < 3x10-4). Limitations of the current study include the possibility that spouse effects may be due to assortative mating and the relatively small polygenic risk score effect sizes. CONCLUSIONS: Genetic factors, as well as chronic pain in a partner or spouse, contribute substantially to the risk of chronic pain for an individual. Chronic pain is genetically correlated with MDD, has a polygenic architecture, and is associated with polygenic risk of MDD.


Subject(s)
Chronic Pain/etiology , Depressive Disorder, Major/etiology , Adult , Aged , Chronic Pain/complications , Chronic Pain/genetics , Depressive Disorder, Major/complications , Depressive Disorder, Major/genetics , Family , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Multifactorial Inheritance , Pedigree , Risk Factors , Social Environment , Surveys and Questionnaires , United Kingdom
8.
Addict Biol ; 21(2): 469-80, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25865819

ABSTRACT

Alcohol dependence is frequently co-morbid with cognitive impairment. The relationship between these traits is complex as cognitive dysfunction may arise as a consequence of heavy drinking or exist prior to the onset of dependence. In the present study, we tested the genetic overlap between cognitive abilities and alcohol dependence using polygenic risk scores (PGRS). We created two independent PGRS derived from two recent genome-wide association studies (GWAS) of alcohol dependence (SAGE GWAS: n = 2750; Yale-Penn GWAS: n = 2377) in a population-based cohort, Generation Scotland: Scottish Family Health Study (GS:SFHS) (n = 9863). Data on alcohol consumption and four tests of cognitive function [Mill Hill Vocabulary (MHV), digit symbol coding, phonemic verbal fluency (VF) and logical memory] were available. PGRS for alcohol dependence were negatively associated with two measures of cognitive function: MHV (SAGE: P = 0.009, ß = -0.027; Yale-Penn: P = 0.001, ß = -0.034) and VF (SAGE: P = 0.0008, ß = -0.036; Yale-Penn: P = 0.00005, ß = -0.044). VF remained robustly associated after adjustment for education and social deprivation; however, the association with MHV was substantially attenuated. Shared genetic variants may account for some of the phenotypic association between cognitive ability and alcohol dependence. A significant negative association between PGRS and social deprivation was found (SAGE: P = 5.2 × 10(-7) , ß = -0.054; Yale-Penn: P = 0.000012, ß = -0.047). Individuals living in socially deprived regions were found to carry more alcohol dependence risk alleles which may contribute to the increased prevalence of problem drinking in regions of deprivation. Future work to identify genes which affect both cognitive impairment and alcohol dependence will help elucidate biological processes common to both disorders.


Subject(s)
Alcohol Drinking/genetics , Alcoholism/genetics , Cognition Disorders/genetics , Cognition/physiology , Alcohol Drinking/epidemiology , Alcohol Drinking/psychology , Alcoholism/epidemiology , Alcoholism/psychology , Cognition Disorders/epidemiology , Cohort Studies , Educational Status , Female , Gene Frequency/genetics , Genotype , Humans , Male , Middle Aged , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Prevalence , Risk Factors , Scotland/epidemiology , Socioeconomic Factors
9.
Transl Psychiatry ; 10(1): 309, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908133

ABSTRACT

Research has shown differences in subcortical brain volumes between participants with schizophrenia and healthy controls. However, none of these differences have been found to associate with schizophrenia polygenic risk. Here, in a large sample (n = 14,701) of unaffected participants from the UK Biobank, we test whether schizophrenia polygenic risk scores (PRS) limited to specific gene-sets predict subcortical brain volumes. We compare associations with schizophrenia PRS at the whole genome level ('genomic', including all SNPs associated with the disorder at a p-value threshold < 0.05) with 'genic' PRS (based on SNPs in the vicinity of known genes), 'intergenic' PRS (based on the remaining SNPs), and genic PRS limited to SNPs within 7 gene-sets previously found to be enriched for genetic association with schizophrenia ('abnormal behaviour,' 'abnormal long-term potentiation,' 'abnormal nervous system electrophysiology,' 'FMRP targets,' '5HT2C channels,' 'CaV2 channels' and 'loss-of-function intolerant genes'). We observe a negative association between the 'abnormal behaviour' gene-set PRS and volume of the right thalamus that survived correction for multiple testing (ß = -0.031, pFDR = 0.005) and was robust to different schizophrenia PRS p-value thresholds. In contrast, the only association with genomic PRS surviving correction for multiple testing was for right pallidum, which was observed using a schizophrenia PRS p-value threshold < 0.01 (ß = -0.032, p = 0.0003, pFDR = 0.02), but not when using other PRS P-value thresholds. We conclude that schizophrenia PRS limited to functional gene sets may provide a better means of capturing differences in subcortical brain volume than whole genome PRS approaches.


Subject(s)
Schizophrenia , Biological Specimen Banks , Brain/diagnostic imaging , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Schizophrenia/genetics , United Kingdom
10.
Nat Neurosci ; 23(2): 179-184, 2020 02.
Article in English | MEDLINE | ID: mdl-31932766

ABSTRACT

Schizophrenia is a highly polygenic disorder with important contributions from both common and rare risk alleles. We analyzed exome sequencing data for de novo variants (DNVs) in a new sample of 613 schizophrenia trios and combined this with published data to give a total of 3,444 trios. In this new data, loss-of-function (LoF) DNVs were significantly enriched among 3,471 LoF-intolerant genes, which supports previous findings. In the full dataset, genes associated with neurodevelopmental disorders (n = 159) were significantly enriched for LoF DNVs. Within these neurodevelopmental disorder genes, SLC6A1, which encodes a γ-aminobutyric acid transporter, was associated with missense-damaging DNVs. In 1,122 trios for which genome-wide common variant data were available, schizophrenia and bipolar disorder polygenic risk were significantly overtransmitted to probands. Probands carrying LoF or deletion DNVs in LoF-intolerant or neurodevelopmental disorder genes had significantly less overtransmission of schizophrenia polygenic risk than did non-carriers, which provides a second robust line of evidence that these DNVs increase liability to schizophrenia.


Subject(s)
GABA Plasma Membrane Transport Proteins/genetics , Genetic Predisposition to Disease/genetics , Schizophrenia/genetics , Adult , Female , Humans , Male , Mutation, Missense , Exome Sequencing
11.
Biol Psychiatry ; 87(9): 857-865, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32087949

ABSTRACT

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. METHODS: We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. RESULTS: Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. CONCLUSIONS: Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.


Subject(s)
Huntington Disease , Psychotic Disorders , Cognition , Genome-Wide Association Study , Humans , Huntington Disease/complications , Huntington Disease/genetics , Psychotic Disorders/complications , Psychotic Disorders/genetics , Risk Factors
12.
Biol Psychiatry ; 86(4): 265-273, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31230729

ABSTRACT

BACKGROUND: A recent genome-wide association study (GWAS) of autism spectrum disorder (ASD) (ncases = 18,381, ncontrols = 27,969) has provided novel opportunities for investigating the etiology of ASD. Here, we integrate the ASD GWAS summary statistics with summary-level gene expression data to infer differential gene expression in ASD, an approach called transcriptome-wide association study (TWAS). METHODS: Using FUSION software, ASD GWAS summary statistics were integrated with predictors of gene expression from 16 human datasets, including adult and fetal brains. A novel adaptation of established statistical methods was then used to test for enrichment within candidate pathways and specific tissues and at different stages of brain development. The proportion of ASD heritability explained by predicted expression of genes in the TWAS was estimated using stratified linkage disequilibrium score regression. RESULTS: This study identified 14 genes as significantly differentially expressed in ASD, 13 of which were outside of known genome-wide significant loci (±500 kb). XRN2, a gene proximal to an ASD GWAS locus, was inferred to be significantly upregulated in ASD, providing insight into the functional consequence of this associated locus. One novel transcriptome-wide significant association from this study is the downregulation of PDIA6, which showed minimal evidence of association in the GWAS, and in gene-based analysis using MAGMA. Predicted gene expression in this study accounted for 13.0% of the total ASD single nucleotide polymorphism heritability. CONCLUSIONS: This study has implicated several genes as significantly up/downregulated in ASD, providing novel and useful information for subsequent functional studies. This study also explores the utility of TWAS-based enrichment analysis and compares TWAS results with a functionally agnostic approach.


Subject(s)
Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Transcriptome , Exoribonucleases/genetics , Genomics , Humans , Protein Disulfide-Isomerases/genetics
13.
Ann Clin Transl Neurol ; 6(10): 2054-2065, 2019 10.
Article in English | MEDLINE | ID: mdl-31560179

ABSTRACT

OBJECTIVE: To develop and validate a novel 14-item self-completed questionnaire (in English and German) enquiring about the presence of non-motor symptoms (NMS) during the past month in patients with craniocervical dystonia in an international multicenter study. METHODS: The Dystonia Non-Motor Symptoms Questionnaire (DNMSQuest) covers seven domains including sleep, autonomic symptoms, fatigue, emotional well-being, stigma, activities of daily living, sensory symptoms. The feasibility and clinimetric attributes were analyzed. RESULTS: Data from 194 patients with CD (65.6% female, mean age 58.96 ± 12.17 years, duration of disease 11.95 ± 9.40 years) and 102 age- and sex-matched healthy controls (66.7% female, mean age 55.67 ± 17.62 years) were collected from centres in Germany and the UK. The median total NMS score in CD patients was 5 (interquartile range 3-7), significantly higher than in healthy controls with 1 (interquartile range 0.75-2.25) (P < 0.001, Mann-Whitney U-test). Evidence for intercorrelation and convergent validity is shown by moderate to high correlations of total DNMSQuest score with motor symptom severity (TWSTRS: rs  = 0.61), clinical global impression (rs  = 0.40), and health-related quality of life measures: CDQ-24 (rs  = 0.74), EQ-5D index (rs  = -0.59), and scale (rs  = -0.49) (all P < 0.001). Data quality and acceptability was very satisfactory. INTERPRETATION: The DNMSQuest, a patient self-completed questionnaire for NMS assessment in CD patients, appears robust, reproducible, and valid in clinical practice showing a tangible impact of NMS on quality of life in CD. As there is no specific, comprehensive, validated tool to assess the burden of NMS in dystonia, the DNMSQuest can bridge this gap and could easily be integrated into clinical practice.


Subject(s)
Psychometrics/instrumentation , Psychometrics/standards , Torticollis/diagnosis , Torticollis/physiopathology , Adult , Aged , Humans , Middle Aged , Reproducibility of Results , Surveys and Questionnaires/standards , Torticollis/psychology
14.
Exp Neurol ; 316: 20-26, 2019 06.
Article in English | MEDLINE | ID: mdl-30965038

ABSTRACT

Insulin resistance, broadly defined as the reduced ability of insulin to exert its biological action, has been associated with depression and cognitive dysfunction in observational studies. However, it is unclear whether these associations are causal and whether they might be underpinned by other shared factors. To address this knowledge gap, we capitalized on the stability of genetic biomarkers through the lifetime, and on their unidirectional relationship with depression and cognition. Specifically, we determined the association between quantitative measures of cognitive function and depression and genetic instruments of insulin resistance traits in two large-scale population samples, the Generation Scotland: Scottish Family Health Study (GS: SFHS; N = 19,994) and in the UK Biobank (N = 331,374). In the GS:SFHS, the polygenic risk score (PRS) for fasting insulin was associated with verbal intelligence and depression while the PRS for the homeostasis model assessment of insulin resistance was associated with verbal intelligence. Despite this overlap in genetic architecture, Mendelian randomization analyses in the GS:SFHS and in the UK Biobank samples did not yield evidence for causal associations from insulin resistance traits to either depression or cognition. These findings may be due to weak genetic instruments, limited cognitive measures and insufficient power but they may also indicate the need to identify other biological mechanisms that may mediate the relationship from insulin resistance to depression and cognition.


Subject(s)
Cognition , Depression/genetics , Insulin Resistance/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Biomarkers , Cohort Studies , Depression/epidemiology , Depression/psychology , Female , Genetic Predisposition to Disease , Humans , Intelligence/genetics , Male , Middle Aged , Multifactorial Inheritance , Risk Assessment , Scotland/epidemiology , United Kingdom/epidemiology , Young Adult
15.
Br J Health Psychol ; 23(4): 857-871, 2018 11.
Article in English | MEDLINE | ID: mdl-29862618

ABSTRACT

OBJECTIVES: Type D personality is associated with psychological and physical ill-health. However, there has been limited investigation of the role of Type D personality in interventions designed to enhance well-being. This study investigated associations between Type D personality and the efficacy of positive emotional writing for reducing stress, anxiety, and physical symptoms. DESIGN: A between-subjects longitudinal design was employed. METHOD: Participants (N = 71, Mage  = 28.2, SDage  = 12.4) completed self-report measures of Type D personality, physical symptoms, perceived stress, and trait anxiety, before completing either (1) positive emotional writing or (2) a non-emotive control writing task, for 20 min per day over three consecutive days. State anxiety was measured immediately before and after each writing session, and self-report questionnaires were again administered 4 weeks post-writing. RESULTS: Participants in the positive emotional writing condition showed significantly greater reductions in (1) state anxiety and (2) both trait anxiety and perceived stress over the 4-week follow-up period, compared to the control group. While these effects were not moderated by Type D personality, a decrease in trait anxiety was particularly evident in participants who reported both high levels of social inhibition and low negative affectivity. Linguistic analysis of the writing diaries showed that Type D personality was positively associated with swear word use, but not any other linguistic categories. CONCLUSION: These findings support the efficacy of positive emotional writing for alleviating stress and anxiety, but not perceived physical symptoms. Swearing may be a coping strategy employed by high Type D individuals. Statement of contribution What is already known on this subject? Type D (distressed) personality is characterized by high levels of both negative affectivity and social inhibition, and has been associated with adverse physical and psychological health. Positive emotional writing is known to reduce subjectively reported physical symptoms and increase positive affect. What does this study add? Positive emotional writing was shown to attenuate (1) state anxiety immediately post-writing, and (2) trait anxiety and perceived stress 4 weeks post-writing. The findings demonstrate that positive writing might be a useful intervention for attenuating the adverse psychological effects of Type D personality in the general population. Type D personality was associated with more frequent use of swear words, which may be a coping mechanism used by high Type D individuals.


Subject(s)
Anxiety/prevention & control , Emotions , Health Status , Stress, Psychological/prevention & control , Type D Personality , Writing , Adaptation, Psychological , Adult , Anxiety/complications , Anxiety/psychology , Female , Humans , Longitudinal Studies , Male , Stress, Psychological/complications , Stress, Psychological/psychology , Surveys and Questionnaires
16.
Parkinsons Dis ; 2018: 7274085, 2018.
Article in English | MEDLINE | ID: mdl-30662706

ABSTRACT

Dietary habits may differ between Parkinson's disease (PD) patients of different ethnicities. The primary aim of this cross-sectional analysis was to compare dietary habits in a multiethnic PD population and investigate potential nonmotor differences. All patients completed a dietary habits questionnaire. Besides basic demographics, patients' motor involvement (Hoehn and Yahr (HY)) and nonmotor symptoms (Nonmotor Symptoms Scale; Hospital Anxiety and Depression Scale) were assessed. 139 PD patients were included (mean age 66.8 ± 11.6 years; 61.2% male; mean disease duration 6.2 ± 5.2 years; median HY 3): 47.5% were White, 24.5% Asian, and 28.0% Black African and Caribbean (BAC). We found dietary differences between the groups, including a greater frequency of vegetarians and greater consumption of cumin, turmeric, and cinnamon as well as lower consumption of beef in Asian patients than in White and BAC and greater consumption of chili than in White patients and higher consumption of pork in White than Asian and BAC patients. There were no significant differences in dietary supplement consumption after correction for multiple comparisons. None of the dietary factors examined were associated with differences in nonmotor symptoms. Diet and supplement use vary in PD patients across ethnicities, this is both a problem and opportunity for nutritional medicine research. These data support the importance of considering ethnic diversity as part of recruitment strategy in nutrition and clinical studies.

17.
Neuropsychopharmacology ; 43(10): 2146-2153, 2018 09.
Article in English | MEDLINE | ID: mdl-29728651

ABSTRACT

Accumulating evidence suggests that genetic factors have a role in major depressive disorder (MDD). However, only limited MDD risk loci have been identified so far. Here we perform a meta-analysis (a total of 90,150 MDD cases and 246,603 controls) through combing three genome-wide association studies of MDD, including 23andMe (cases were self-reported with a clinical diagnosis or treatment of depression), CONVERGE (cases were diagnosed using the Composite International Diagnostic Interview) and PGC (cases were diagnosed using direct structured diagnostic interview (by trained interviewers) or clinician-administered DSM-IV checklists). Genetic variants from two previously unreported loci (rs10457592 on 6q16.2 and rs2004910 on 12q24.31) showed significant associations with MDD (P < 5 × 10-8) in a total of 336,753 subjects. SNPs (a total of 171) with a P < 1 × 10-7 in the meta-analysis were further replicated in an independent sample (GS:SFHS, 2,659 MDD cases (diagnosed with DSM-IV) and 17,237 controls) and one additional risk locus (rs3785234 on 16p13.3, P = 1.57 × 10-8) was identified in the combined samples (a total of 92,809 cases and 263,840 controls). Risk variants on the identified risk loci were associated with gene expression in human brain tissues and mRNA expression analysis showed that FBXL4 and RSRC1 were significantly upregulated in brains of MDD cases compared with controls, suggesting that genetic variants may confer risk of MDD through regulating the expression of these two genes. Our study identified three novel risk loci (6q16.2, 12q24.31, and 16p13.3) for MDD and suggested that FBXL4 and RSRC1 may play a role in MDD. Further functional characterization of the identified risk genes may provide new insights for MDD pathogenesis.


Subject(s)
Depressive Disorder, Major/genetics , Genetic Variation/genetics , Brain Chemistry/genetics , Chromosomes, Human , Depressive Disorder, Major/psychology , Diagnostic and Statistical Manual of Mental Disorders , F-Box Proteins/genetics , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Risk Assessment , Ubiquitin-Protein Ligases/genetics
18.
Commun Biol ; 1: 163, 2018.
Article in English | MEDLINE | ID: mdl-30320231

ABSTRACT

Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.

19.
Genome Biol ; 19(1): 194, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30419947

ABSTRACT

BACKGROUND: Genetic influences on gene expression in the human fetal brain plausibly impact upon a variety of postnatal brain-related traits, including susceptibility to neuropsychiatric disorders. However, to date, there have been no studies that have mapped genome-wide expression quantitative trait loci (eQTL) specifically in the human prenatal brain. RESULTS: We performed deep RNA sequencing and genome-wide genotyping on a unique collection of 120 human brains from the second trimester of gestation to provide the first eQTL dataset derived exclusively from the human fetal brain. We identify high confidence cis-acting eQTL at the individual transcript as well as whole gene level, including many mapping to a common inversion polymorphism on chromosome 17q21. Fetal brain eQTL are enriched among risk variants for postnatal conditions including attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. We further identify changes in gene expression within the prenatal brain that potentially mediate risk for neuropsychiatric traits, including increased expression of C4A in association with genetic risk for schizophrenia, increased expression of LRRC57 in association with genetic risk for bipolar disorder, and altered expression of multiple genes within the chromosome 17q21 inversion in association with variants influencing the personality trait of neuroticism. CONCLUSIONS: We have mapped eQTL operating in the human fetal brain, providing evidence that these confer risk to certain neuropsychiatric disorders, and identifying gene expression changes that potentially mediate susceptibility to these conditions.


Subject(s)
Bipolar Disorder/genetics , Brain/metabolism , Genetic Markers , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Schizophrenia/genetics , Bipolar Disorder/pathology , Brain/embryology , Chromosome Mapping , Female , Fetus/metabolism , Gene Expression Regulation , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Schizophrenia/pathology
20.
Transl Psychiatry ; 8(1): 9, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29317602

ABSTRACT

Few replicable genetic associations for Major Depressive Disorder (MDD) have been identified. Recent studies of MDD have identified common risk variants by using a broader phenotype definition in very large samples, or by reducing phenotypic and ancestral heterogeneity. We sought to ascertain whether it is more informative to maximize the sample size using data from all available cases and controls, or to use a sex or recurrent stratified subset of affected individuals. To test this, we compared heritability estimates, genetic correlation with other traits, variance explained by MDD polygenic score, and variants identified by genome-wide meta-analysis for broad and narrow MDD classifications in two large British cohorts - Generation Scotland and UK Biobank. Genome-wide meta-analysis of MDD in males yielded one genome-wide significant locus on 3p22.3, with three genes in this region (CRTAP, GLB1, and TMPPE) demonstrating a significant association in gene-based tests. Meta-analyzed MDD, recurrent MDD and female MDD yielded equivalent heritability estimates, showed no detectable difference in association with polygenic scores, and were each genetically correlated with six health-correlated traits (neuroticism, depressive symptoms, subjective well-being, MDD, a cross-disorder phenotype and Bipolar Disorder). Whilst stratified GWAS analysis revealed a genome-wide significant locus for male MDD, the lack of independent replication, and the consistent pattern of results in other MDD classifications suggests that phenotypic stratification using recurrence or sex in currently available sample sizes is currently weakly justified. Based upon existing studies and our findings, the strategy of maximizing sample sizes is likely to provide the greater gain.


Subject(s)
Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Adult , Aged , Biological Specimen Banks , Female , Humans , Logistic Models , Male , Middle Aged , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Risk Factors , Scotland/epidemiology , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL