Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
2.
Nat Immunol ; 23(3): 380-385, 2022 03.
Article in English | MEDLINE | ID: mdl-35115679

ABSTRACT

Delayed dosing intervals are a strategy to immunize a greater proportion of the population. In an observational study, we compared humoral and cellular responses in health care workers receiving two doses of BNT162b2 (Pfizer-BioNTech) vaccine at standard (3- to 6-week) and delayed (8- to 16-week) intervals. In the delayed-interval group, anti-receptor-binding domain antibody titers were significantly enhanced compared to the standard-interval group. The 50% plaque reduction neutralization test (PRNT50) and PRNT90 titers against wild-type (ancestral) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Alpha, Beta and Delta variants were higher in the delayed-interval group. Spike-specific polyfunctional CD4+ and CD8+ T cells expressing interferon-γ and interleukin-2 were comparable between the two groups. Here, we show that the strategy of delaying second doses of mRNA vaccination may lead to enhanced humoral immune responses, including improved virus neutralization against wild-type and variant SARS-CoV-2 viruses. This finding has potentially important implications as vaccine implementation continues across a greater proportion of the global population.


Subject(s)
BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adult , Cells, Cultured , Female , Humans , Immunity, Humoral , Immunization, Secondary , Interferon-gamma/metabolism , Interleukin-2/metabolism , Male , Middle Aged , Vaccination , Vaccination Hesitancy
3.
Nature ; 623(7985): 132-138, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853126

ABSTRACT

Hospital-based transmission had a dominant role in Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England, we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognized scale of hospital transmission, have direct implications for targeting of hospital control measures and highlight the need to design hospitals better equipped to limit the transmission of future high-consequence pathogens.


Subject(s)
COVID-19 , Cross Infection , Disease Transmission, Infectious , Inpatients , Pandemics , Humans , Communicable Disease Control , COVID-19/epidemiology , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/transmission , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , England/epidemiology , Hospitals , Pandemics/prevention & control , Pandemics/statistics & numerical data , Quarantine/statistics & numerical data , SARS-CoV-2
4.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35172051

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
5.
Am J Transplant ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38499087

ABSTRACT

Data regarding coronavirus disease 2019 (COVID-19) outcomes in solid organ transplant recipients (SOTr) across severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) waves, including the impact of different measures, are lacking. This cohort study, conducted from March 2020 to May 2023 in Toronto, Canada, aimed to analyze COVID-19 outcomes in 1975 SOTr across various SARS-CoV-2 waves and assess the impact of preventive and treatment measures. The primary outcome was severe COVID-19, defined as requiring supplemental oxygen, with secondary outcomes including hospitalization, length of stay, intensive care unit (ICU) admission, and 30-day and 1-year all-cause mortality. SARS-CoV-2 waves were categorized as Wildtype/Alpha/Delta (318 cases, 16.1%), Omicron BA.1 (268, 26.2%), Omicron BA.2 (268, 13.6%), Omicron BA.5 (561, 28.4%), Omicron BQ.1.1 (188, 9.5%), and Omicron XBB.1.5 (123, 6.2%). Severe COVID-19 rate was highest during the Wildtype/Alpha/Delta wave (44.6%), and lower in Omicron waves (5.7%-16.1%). Lung transplantation was associated with severe COVID-19 (OR: 4.62, 95% CI: 2.71-7.89), along with rituximab treatment (OR: 4.24, 95% CI: 1.04-17.3), long-term corticosteroid use (OR: 3.11, 95% CI: 1.46-6.62), older age (OR: 1.51, 95% CI: 1.30-1.76), chronic lung disease (OR: 2.11, 95% CI: 1.36-3.30), chronic kidney disease (OR: 2.18, 95% CI: 1.17-4.07), and diabetes (OR: 1.97, 95% CI: 1.37-2.83). Early treatment and ≥3 vaccine doses were associated with reduced severity (OR: 0.29, 95% CI: 0.19-0.46, and 0.35, 95% CI: 0.21-0.60, respectively). Tixagevimab/cilgavimab and bivalent boosters did not show a significant impact. The study concludes that COVID-19 severity decreased across different variants in SOTr. Lung transplantation was associated with worse outcomes and may benefit more from preventive and early therapeutic interventions.

6.
Transpl Infect Dis ; 26(1): e14206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38055610

ABSTRACT

In this clinicopathological conference, invited experts discussed a previously published case of a patient with nonischemic cardiomyopathy who underwent heart transplantation from a genetically modified pig source animal. His complex course included detection of porcine cytomegalovirus by plasma microbial cell-free DNA and eventual xenograft failure. The objectives of the session included discussion of selection of immunosuppressive regimens and prophylactic antimicrobials for human xenograft recipients, description of infectious disease risk assessment and mitigation in potential xenograft donors and understanding of screening and therapeutic strategies for potential xenograft-related infections.


Subject(s)
Heart Transplantation , Animals , Humans , Swine , Transplantation, Heterologous/adverse effects , Heart Transplantation/adverse effects , Immunosuppressive Agents/adverse effects , Tissue Donors
7.
Transpl Infect Dis ; 26(2): e14243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407514

ABSTRACT

This is a case of a kidney transplant recipient who presented with skin lesions, low-grade fevers, and pancytopenia 2 months after his transplant.


Subject(s)
Kidney Transplantation , Humans , Argentina , Kidney Transplantation/adverse effects , Latin America
8.
Vet Pathol ; 61(3): 410-420, 2024 May.
Article in English | MEDLINE | ID: mdl-38197395

ABSTRACT

An epidemic of highly pathogenic avian influenza (HPAI) began in North America in the winter of 2021. The introduced Eurasian H5N1 clade 2.3.4.4b virus subsequently reassorted with North American avian influenza strains. This postmortem study describes the lesions and influenza A virus antigen distribution in 3 species of raptors, including bald eagles (Haliaeetus leucocephalus, n = 6), red-tailed hawks (Buteo jamaicensis, n = 9), and great horned owls (Bubo virginianus, n = 8), naturally infected with this virus strain based on positive reverse transcriptase polymerase chain reaction and sequencing results from oropharyngeal swabs. The birds presented with severe neurologic signs and either died or were euthanized because of the severity of their clinical signs and suspected influenza virus infection. Gross lesions were uncommon and included forebrain hemorrhages in 2 eagles, myocarditis in 1 hawk, and multifocal pancreatic necrosis in 3 owls. Histological lesions were common and included encephalitis, myocarditis, multifocal pancreas necrosis, multifocal adrenal necrosis, histiocytic splenitis, and anterior uveitis in decreasing frequency. Influenza A viral antigen was detected in brain, heart, pancreas, adrenal gland, kidney, spleen, liver, and eye. In conclusion, bald eagles, red-tailed hawks, and great horned owls infected with the HPAI clade 2.3.4.4b virus strain and showing neurological signs of illness may develop severe or fatal disease with histologically detectable lesions in the brain that are frequently positive for viral antigen.


Subject(s)
Antigens, Viral , Eagles , Hawks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Strigiformes , Animals , Strigiformes/virology , Eagles/virology , Hawks/virology , Influenza in Birds/virology , Influenza in Birds/pathology , Antigens, Viral/analysis , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Male , Female
9.
J Infect Dis ; 228(Suppl 1): S55-S69, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37539765

ABSTRACT

Patients with cancer demonstrate an increased vulnerability for infection and severe disease by SARS-CoV-2, the causative agent of COVID-19. Risk factors for severe COVID-19 include comorbidities, uncontrolled disease, and current line of treatment. Although COVID-19 vaccines have afforded some level of protection against infection and severe disease among patients with solid tumors and hematologic malignancies, decreased immunogenicity and real-world effectiveness have been observed among this population compared with healthy individuals. Characterizing and understanding the immune response to increasing doses or differing schedules of COVID-19 vaccines among patients with cancer is important to inform clinical and public health practices. In this article, we review SARS-CoV-2 susceptibility and immune responses to COVID-19 vaccination in patients with solid tumors, hematologic malignancies, and those receiving hematopoietic stem cell transplant or chimeric-antigen receptor T-cell therapy.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Neoplasms , Receptors, Chimeric Antigen , Humans , COVID-19 Vaccines , SARS-CoV-2 , Neoplasms/complications , Neoplasms/therapy , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Vaccination , Immunity
10.
Clin Infect Dis ; 77(2): 229-236, 2023 07 26.
Article in English | MEDLINE | ID: mdl-36975097

ABSTRACT

BACKGROUND: In solid organ transplant (SOT) recipients, the primary vaccination series against Coronavirus Disease 2019 is 3 doses followed by boosters. We determined whether a fourth dose booster induced Omicron BA.4/5 neutralizing antibodies (nAbs) and T cells in a large multicenter cohort study. METHODS: Serum was collected 4-6 weeks post-third and post-fourth doses of messenger RNA vaccine in 222 SOT recipients. nAbs were measured using a pseudovirus neutralization assay that targeted the Omicron BA.4/5 spike protein. A subset underwent T-cell testing. RESULTS: The median age of the cohort was 63 years (interquartile range [IQR], 50-68) with 61.7% men. BA.4/5 nAb detection increased from 26.6% (59 of 222) post-third dose to 53.6% (119 of 222) post-fourth dose (P < .0001). In patients with breakthrough infection prior to the fourth dose (n = 27), nAbs were detected in 77.8% and median nAb titers were significantly higher compared with those with 4 vaccine doses alone (P < .0001). Factors associated with a low BA.4/5 neutralization response after the fourth dose were older age (odds ratio [OR], 0.96; 95% confidence interval [CI], .94-.99), mycophenolate use (OR, 0.39; 95% CI, .20-.77) and prednisone use (OR, 0.34; 95% CI, .18-.63), and vaccine type (OR, 0.72; 95% CI, .51-.99), while breakthrough infection prior to the fourth dose (OR, 3.6; 95% CI, 1.3-9.9) was associated with a greater nAb response. Polyfunctional BA.4/5-specific CD4+ T cells significantly increased after 4 doses and were identified in 76.9% of patients at a median frequency of 213/106 cells (IQR, 98-650). CONCLUSIONS: In summary, a booster significantly increases BA.4/5-specific neutralization and polyfunctional CD4+ T-cell responses, suggesting protection from severe disease even with new Omicron variants. However, SOT recipients who are older and on mycophenolate and prednisone need additional preventative strategies.


Subject(s)
COVID-19 , Organ Transplantation , Male , Humans , Middle Aged , Female , Cohort Studies , Prednisone , SARS-CoV-2 , Antibodies, Neutralizing , Breakthrough Infections , Immunosuppressive Agents/therapeutic use , RNA, Messenger , Transplant Recipients , mRNA Vaccines , Antibodies, Viral
11.
Emerg Infect Dis ; 29(1): 184-188, 2023 01.
Article in English | MEDLINE | ID: mdl-36454718

ABSTRACT

Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections and delected Omicron subvariant waves emergence contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.


Subject(s)
COVID-19 , Humans , Animals , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , United Kingdom/epidemiology , Health Personnel , Reinfection , Urodela
12.
Transpl Infect Dis ; 25 Suppl 1: e14109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37515788

ABSTRACT

Revaccination after receipt of a hematopoietic cell transplant (HCT) or cellular therapies is a pillar of patient supportive care, with the potential to reduce morbidity and mortality linked to vaccine-preventable infections. This review synthesizes national, international, and expert consensus vaccination schedules post-HCT and presents evidence regarding the efficacy of newer vaccine formulations for pneumococcus, recombinant zoster vaccine, and coronavirus disease 2019 in patients with hematological malignancy. Revaccination post-cellular therapies are less well defined. This review highlights important considerations around poor vaccine response, seroprevalence preservation after cellular therapies, and the optimal timing of revaccination. Future research should assess the immunogenicity and real-world effectiveness of new vaccine formulations and/or vaccine schedules in patients post-HCT and cellular therapy, including analysis of vaccine response that relates to the target of cellular therapies.


Subject(s)
Communicable Diseases , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Vaccines , Humans , Communicable Diseases/etiology , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive , Seroepidemiologic Studies
13.
Ann Intern Med ; 175(2): 226-233, 2022 02.
Article in English | MEDLINE | ID: mdl-34807716

ABSTRACT

BACKGROUND: COVID-19 is more severe in transplant recipients. Variants of concern have supplanted wild-type virus. In transplant recipients, data are limited on 2-dose or 3-dose vaccine immunogenicity against variant viruses. OBJECTIVE: To assess neutralizing antibody responses against SARS-CoV-2 variants in transplant recipients after 2 and 3 vaccine doses. DESIGN: Secondary analysis of a randomized, double-blind, controlled trial of a third dose of mRNA-1273 vaccine versus placebo. (ClinicalTrials.gov: NCT04885907). SETTING: Single-center transplant program. PATIENTS: Organ transplant recipients. INTERVENTION: Third dose of mRNA-1273 vaccine versus placebo. MEASUREMENTS: Sera were analyzed for neutralization against wild-type virus and the Alpha, Beta, and Delta variants using a surrogate virus neutralization assay and a spike-pseudotyped lentivirus assay. RESULTS: A total of 117 transplant recipients were analyzed (60 in the mRNA-1273 group and 57 in the placebo group). Sera were obtained before and 4 to 6 weeks after the third dose. After 2 doses, the proportion of patients with positive neutralization for all 3 variants was small compared with wild-type virus. After the third dose of mRNA-1273 vaccine, the proportion with a positive neutralization response versus placebo was improved for all 3 variants as measured by both assays. Based on the pseudovirus neutralization assay against the Delta variant, 33 of 60 (55%) patients were positive in the mRNA-1273 group versus 10 of 57 (18%) in the placebo group (difference, 37 [95% CI, 19 to 53] percentage points). The differences were 36 (CI, 17 to 51) percentage points for the Alpha variant and 31 (CI, 15 to 46) percentage points for the Beta variant. In the mRNA-1273 group, lower neutralization values were observed for variants compared with wild-type virus, especially the Beta variant. LIMITATIONS: There is no clear correlate of protection for neutralizing antibody. This was a secondary analysis. CONCLUSION: In organ transplant recipients, a third dose of mRNA vaccine increases neutralizing antibody response against SARS-CoV-2 variants compared with placebo. PRIMARY FUNDING SOURCE: Ajmera Transplant Centre.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/prevention & control , Organ Transplantation , SARS-CoV-2 , Transplant Recipients , 2019-nCoV Vaccine mRNA-1273/adverse effects , Aged , COVID-19/virology , Double-Blind Method , Female , Humans , Immunocompromised Host , Male , Middle Aged
14.
Am J Transplant ; 22(8): 2089-2093, 2022 08.
Article in English | MEDLINE | ID: mdl-35266606

ABSTRACT

The SARS-CoV-2 virus Omicron variant has now supplanted wild-type virus as the dominant circulating strain globally. Three doses of mRNA COVID-19 vaccine are recommended for transplant recipients as their primary vaccine series. However, the immunogenicity of mRNA vaccines as they specifically relate to the Omicron variant are not well studied. We analyzed Omicron-specific neutralization in transplant recipients after three-doses of mRNA-1273 vaccine. Neutralization was determined using a SARS-CoV-2 spike pseudotyped lentivirus assay with constructs for Omicron and Delta variants. A total of 60 transplant patients (kidney, kidney-pancreas, lung, heart, liver) were analyzed 1 month and 3 months after completion of three doses of mRNA-1273. At 1 month, 11/60 (18.3%) patients had detectable neutralizing antibody responses to Omicron (log10 ID50 of 2.38 [range 1.34-3.57]). At 3 months, 8/51 (15.7%) were positive (median log10 ID50 [1.68; range 1.12-3.61; approximate fivefold reduction over time]). The proportion of positive patients was lower for Omicron versus wild-type, and Omicron vs. Delta (p < .001). No demographic variables were found to be significantly associated with Omicron response. Many patients with a positive anti-RBD response still had undetectable Omicron-specific neutralizing antibody. In conclusion, three doses of mRNA vaccine results in poor neutralizing responses against the Omicron variant in transplant patients.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Transplant Recipients , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
Lancet ; 397(10283): 1459-1469, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33844963

ABSTRACT

BACKGROUND: Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. METHODS: A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. FINDINGS: From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13-0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. INTERPRETATION: A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. FUNDING: Department of Health and Social Care of the UK Government, Public Health England, The National Institute for Health Research, with contributions from the Scottish, Welsh and Northern Irish governments.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/immunology , Health Personnel , Adult , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , England , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Prospective Studies , Reinfection , Risk Factors , SARS-CoV-2
16.
Lancet ; 397(10286): 1725-1735, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33901423

ABSTRACT

BACKGROUND: BNT162b2 mRNA and ChAdOx1 nCOV-19 adenoviral vector vaccines have been rapidly rolled out in the UK from December, 2020. We aimed to determine the factors associated with vaccine coverage for both vaccines and documented the vaccine effectiveness of the BNT162b2 mRNA vaccine in a cohort of health-care workers undergoing regular asymptomatic testing. METHODS: The SIREN study is a prospective cohort study among staff (aged ≥18 years) working in publicly-funded hospitals in the UK. Participants were assigned into either the positive cohort (antibody positive or history of infection [indicated by previous positivity of antibody or PCR tests]) or the negative cohort (antibody negative with no previous positive test) at the beginning of the follow-up period. Baseline risk factors were collected at enrolment, symptom status was collected every 2 weeks, and vaccination status was collected through linkage to the National Immunisations Management System and questionnaires. Participants had fortnightly asymptomatic SARS-CoV-2 PCR testing and monthly antibody testing, and all tests (including symptomatic testing) outside SIREN were captured. Data cutoff for this analysis was Feb 5, 2021. The follow-up period was Dec 7, 2020, to Feb 5, 2021. The primary outcomes were vaccinated participants (binary ever vacinated variable; indicated by at least one vaccine dose recorded by at least one of the two vaccination data sources) for the vaccine coverage analysis and SARS-CoV-2 infection confirmed by a PCR test for the vaccine effectiveness analysis. We did a mixed-effect logistic regression analysis to identify factors associated with vaccine coverage. We used a piecewise exponential hazard mixed-effects model (shared frailty-type model) using a Poisson distribution to calculate hazard ratios to compare time-to-infection in unvaccinated and vaccinated participants and estimate the impact of the BNT162b2 vaccine on all PCR-positive infections (asymptomatic and symptomatic). This study is registered with ISRCTN, number ISRCTN11041050, and is ongoing. FINDINGS: 23 324 participants from 104 sites (all in England) met the inclusion criteria for this analysis and were enrolled. Included participants had a median age of 46·1 years (IQR 36·0-54·1) and 19 692 (84%) were female; 8203 (35%) were assigned to the positive cohort at the start of the analysis period, and 15 121 (65%) assigned to the negative cohort. Total follow-up time was 2 calendar months and 1 106 905 person-days (396 318 vaccinated and 710 587 unvaccinated). Vaccine coverage was 89% on Feb 5, 2021, 94% of whom had BNT162b2 vaccine. Significantly lower coverage was associated with previous infection, gender, age, ethnicity, job role, and Index of Multiple Deprivation score. During follow-up, there were 977 new infections in the unvaccinated cohort, an incidence density of 14 infections per 10 000 person-days; the vaccinated cohort had 71 new infections 21 days or more after their first dose (incidence density of eight infections per 10 000 person-days) and nine infections 7 days after the second dose (incidence density four infections per 10 000 person-days). In the unvaccinated cohort, 543 (56%) participants had typical COVID-19 symptoms and 140 (14%) were asymptomatic on or 14 days before their PCR positive test date, compared with 29 (36%) with typical COVID-19 symptoms and 15 (19%) asymptomatic in the vaccinated cohort. A single dose of BNT162b2 vaccine showed vaccine effectiveness of 70% (95% CI 55-85) 21 days after first dose and 85% (74-96) 7 days after two doses in the study population. INTERPRETATION: Our findings show that the BNT162b2 vaccine can prevent both symptomatic and asymptomatic infection in working-age adults. This cohort was vaccinated when the dominant variant in circulation was B1.1.7 and shows effectiveness against this variant. FUNDING: Public Health England, UK Department of Health and Social Care, and the National Institute for Health Research.


Subject(s)
COVID-19 Vaccines/supply & distribution , Health Personnel , Occupational Diseases/prevention & control , Occupational Exposure/prevention & control , RNA, Messenger , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Cohort Studies , England , Humans , Prospective Studies , Treatment Outcome
17.
J Clin Microbiol ; 60(8): e0171621, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35543099

ABSTRACT

Cytomegalovirus (CMV) is one of the most important viral complications after solid organ transplantation (SOT). Current preventive and management strategies rely primarily on serologic and viral load testing and remain suboptimal. To address these issues, multiple techniques to measure CMV-specific cell-mediated immunity (CMI) have been developed and evaluated in clinical studies over the past two decades. These assays show significant promise for the personalization of CMV management. For example, CMI assays can be used to help determine the optimal duration of antiviral prophylaxis or whether antiviral therapy is indicated in patients with low levels of CMV reactivation. However, despite numerous studies showing potential utility, these assays are not yet in widespread routine clinical use. Barriers to adoption include variations in test complexity, standardization, and thresholds for positivity and insufficient interventional clinical trials. Here, we provide an updated assessment of commonly available tests and the clinical utility of CMV-specific CMI testing in SOT recipients.


Subject(s)
Cytomegalovirus Infections , Organ Transplantation , Antiviral Agents/therapeutic use , Cytomegalovirus , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/prevention & control , Humans , Immunity, Cellular , Organ Transplantation/adverse effects
18.
CMAJ ; 194(33): E1155-E1163, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36302101

ABSTRACT

BACKGROUND: Severe COVID-19 appears to disproportionately affect people who are immunocompromised, although Canadian data in this context are limited. We sought to determine factors associated with severe COVID-19 outcomes among recipients of organ transplants across Canada. METHODS: We performed a multicentre, prospective cohort study of all recipients of solid organ transplants from 9 transplant programs in Canada who received a diagnosis of COVID-19 from March 2020 to November 2021. Data were analyzed to determine risk factors for oxygen requirement and other metrics of disease severity. We compared outcomes by organ transplant type and examined changes in outcomes over time. We performed a multivariable analysis to determine variables associated with need for supplemental oxygen. RESULTS: A total of 509 patients with solid organ transplants had confirmed COVID-19 during the study period. Risk factors associated with needing (n = 190), compared with not needing (n = 319), supplemental oxygen included age (median 62.6 yr, interquartile range [IQR] 52.5-69.5 yr v. median 55.5 yr, IQR 47.5-66.5; p < 0.001) and number of comorbidities (median 3, IQR 2-3 v. median 2, IQR 1-3; p < 0.001), as well as parameters associated with immunosuppression. Recipients of lung transplants (n = 48) were more likely to have severe disease with a high mortality rate (n = 15, 31.3%) compared with recipients of other organ transplants, including kidney (n = 48, 14.8%), heart (n = 1, 4.4%), liver (n = 9, 11.4%) and kidney-pancreas (n = 3, 12.0%) transplants (p = 0.02). Protective factors against needing supplemental oxygen included having had a liver transplant and receiving azathioprine. Having had 2 doses of SARS-CoV-2 vaccine did not have an appreciable influence on oxygen requirement. Multivariable analysis showed that older age (odds ratio [OR] 1.04, 95% confidence interval [CI] 1.02-1.07) and number of comorbidities (OR 1.63, 95% CI 1.30-2.04), among other factors, were associated with the need for supplemental oxygen. Over time, disease severity did not decline significantly. INTERPRETATION: Despite therapeutic advances and vaccination of recipients of solid organ transplants, evidence of increased severity of COVID-19, in particular among those with lung transplants, supports ongoing public health measures to protect these at-risk people, and early use of COVID-19 therapies for recipients of solid organ transplants.


Subject(s)
COVID-19 , Organ Transplantation , Humans , COVID-19/epidemiology , Prospective Studies , COVID-19 Vaccines , SARS-CoV-2 , Canada/epidemiology , Oxygen
19.
Arch Sex Behav ; 51(8): 4063-4084, 2022 11.
Article in English | MEDLINE | ID: mdl-36201142

ABSTRACT

Despite a multitude of theoretical views, it is still unclear how individuals develop and sustain paraphilic interests (e.g., sexual attraction to children, interest in non-consensual violence). It is also not clear from these views why many paraphilic interests, and especially many paraphilias and paraphilic disorders, are much more common in men than in women. One possible factor affecting male's higher rate of paraphilias is anxiety, because anxiety can potentiate sexual arousal in men. We speculated that paraphilic interests could develop when feelings of anxiety are recurrently generated by atypical sexual stimuli, and when that anxiety repeatedly potentiates sexual arousal, reinforcing sexual response to atypical stimuli. It follows that men with paraphilic interests are susceptible to anxiety disorders, because an anxiety disorder would facilitate the hypothesized developmental process. We conducted a retrospective file review of 1048 consecutive patients (944 male patients retained for analysis) referred to an outpatient sexual behavior clinic at a psychiatric hospital to investigate the link between paraphilias and anxiety. Male patients with a paraphilia had 1.64 greater odds than male patients without a paraphilia of having been diagnosed with an anxiety disorder, but they also had elevated rates of many other types of disorders. Therefore, there does not seem to be a specific link between paraphilias and anxiety in this sample. The discovery of a general link between the paraphilias and psychological disorders in men opens new avenues for studying the developmental origins and consequences of male paraphilic interests.


Subject(s)
Paraphilic Disorders , Child , Humans , Male , Female , Case-Control Studies , Retrospective Studies , Paraphilic Disorders/psychology , Anxiety Disorders , Sexual Behavior/psychology , Anxiety
20.
J Zoo Wildl Med ; 53(2): 249-258, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35758566

ABSTRACT

Elephant endotheliotropic herpesvirus (EEHV) is one of the most important causes of mortality in Asian elephants (Elephas maximus). The unusual tropism of EEHV for endothelial cells of capillaries can lead to catastrophic vascular dysfunction, hemorrhage, cardiac damage, and death. Cardiac troponin I (cTnI) is an intracellular protein of cardiomyocytes that is released into circulation in levels directly correlated to the severity of cardiomyocyte damage. The purpose of this study was to assess if cTnI could be used to distinguish when EEHV viremia leads to clinical disease versus subclinical infection. Thirty-seven individual Asian elephants contributed 53 blood samples that were evaluated for EEHV viremia using quantitative polymerase chain reaction and analyzed for cTnI using a high-sensitivity assay. Viremia was categorized as none (24/53), low (< 20,000 vge/ml, 12/53) and high (≥20,000 vge/ml, 17/53). Seven of the nonviremic samples had detectable cTnI. Nine low-viremia samples were positive for EEHV1 (1A and 1B combined) and lacked a detectable cTnI. Fourteen high-viremia samples were positive for EEHV1 and had detectable cTnI. There was statistical significance between having viremia and having a detectable cTnI value (P = 0.0001), and animals with EEHV1 viremia were more likely to have a positive cTnI value (P = 0.04). The presence of cTnI was associated with the presence of clinical signs, with higher values of cTnI in the presence of clinical signs versus subclinical viremia (P = 0.0001). In addition, four elephants contributed multiple samples from a single viremic event and results displayed a trend of elevation in troponin values with progression of EEHV viremia. The association of EEHV viremia with cTnI suggests these markers might be used in conjunction to help predict when EEHV viremia is likely to progress to EEHV-HD for an individual.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Animals , Endothelial Cells , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Troponin I , Viremia/diagnosis , Viremia/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL