Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS One ; 19(4): e0298464, 2024.
Article in English | MEDLINE | ID: mdl-38630652

ABSTRACT

The global population consumes more seafood from aquaculture today than from capture fisheries and although the aquaculture industry continues to grow, both seafood sectors will continue to be important to the global food supply into the future. As farming continues to expand into ocean systems, understanding how wild populations and fisheries will interact with farms will be increasingly important to informing sustainable ocean planning and management. Using a spatially explicit population and fishing model we simulate several impacts from ocean aquaculture (i.e., aggregation, protection from fishing, and impacts on fitness) to evaluate the mechanisms underlying interactions between aquaculture, wild populations and fisheries. We find that aggregation of species to farms can increase the benefits of protection from fishing that a farm provides and can have greater impacts on more mobile species. Splitting total farm area into smaller farms can benefit fishery catches, whereas larger farms can provide greater ecological benefits through conservation of wild populations. Our results provide clear lessons on how to design and co-manage expanding ocean aquaculture along with wild capture ecosystem management to benefit fisheries or conservation objectives.


Subject(s)
Ecosystem , Fisheries , Animals , Aquaculture/methods , Food Supply , Oceans and Seas , Conservation of Natural Resources , Seafood
2.
PLoS One ; 19(6): e0305950, 2024.
Article in English | MEDLINE | ID: mdl-38905300

ABSTRACT

Anthropogenic pressures threaten biodiversity, necessitating conservation actions founded on robust ecological models. However, prevailing models inadequately capture the spatiotemporal variation in environmental pressures faced by species with high mobility or complex life histories, as data are often aggregated across species' life histories or spatial distributions. We highlight the limitations of static models for dynamic species and incorporate life history variation and spatial distributions for species and stressors into a trait-based vulnerability and impact model. We use green sea turtles in the Greater Caribbean Region to demonstrate how vulnerability and anthropogenic impact for a dynamic species change across four life stages. By incorporating life stages into a trait-based vulnerability model, we observed life stage-specific vulnerabilities that were otherwise unnoticed when using an aggregated trait value set. Early life stages were more vulnerable to some stressors, such as inorganic pollution or marine heat waves, and less vulnerable to others, such as bycatch. Incorporating spatial distributions of stressors and life stages revealed impacts differ for each life stage across spatial areas, emphasizing the importance of stage-specific conservation measures. Our approach showcases the importance of incorporating dynamic processes into ecological models and will enable better and more targeted conservation actions for species with complex life histories and high mobility.


Subject(s)
Turtles , Animals , Turtles/physiology , Biodiversity , Conservation of Natural Resources , Caribbean Region , Models, Biological , Life History Traits , Life Cycle Stages , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL