Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 181(7): 1445-1449, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32533917

ABSTRACT

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Subject(s)
Career Mobility , Research Personnel/trends , Research/trends , Achievement , Biomedical Research , Humans , Research Personnel/education , Science/education , Science/trends , Universities
2.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27238022

ABSTRACT

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Subject(s)
Behavior, Animal , Brain Mapping/methods , Prefrontal Cortex/cytology , Animals , Appetitive Behavior , Basic Helix-Loop-Helix Transcription Factors/genetics , Cocaine/administration & dosage , Electroshock , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Prefrontal Cortex/metabolism
3.
Nature ; 621(7978): 381-388, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648849

ABSTRACT

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Subject(s)
Hippocampus , Neural Pathways , Orexins , Humans , Body Mass Index , Cohort Studies , Cues , Electrophysiology , Evoked Potentials/physiology , Feeding and Eating Disorders/metabolism , Feeding Behavior , Food , Hippocampus/anatomy & histology , Hippocampus/cytology , Hippocampus/metabolism , Obesity/metabolism , Orexins/metabolism
4.
Nature ; 589(7842): 420-425, 2021 01.
Article in English | MEDLINE | ID: mdl-33361808

ABSTRACT

Everyday tasks in social settings require humans to encode neural representations of not only their own spatial location, but also the location of other individuals within an environment. At present, the vast majority of what is known about neural representations of space for self and others stems from research in rodents and other non-human animals1-3. However, it is largely unknown how the human brain represents the location of others, and how aspects of human cognition may affect these location-encoding mechanisms. To address these questions, we examined individuals with chronically implanted electrodes while they carried out real-world spatial navigation and observation tasks. We report boundary-anchored neural representations in the medial temporal lobe that are modulated by one's own as well as another individual's spatial location. These representations depend on one's momentary cognitive state, and are strengthened when encoding of location is of higher behavioural relevance. Together, these results provide evidence for a common encoding mechanism in the human brain that represents the location of oneself and others in shared environments, and shed new light on the neural mechanisms that underlie spatial navigation and awareness of others in real-world scenarios.


Subject(s)
Neurons/physiology , Space Perception/physiology , Spatial Navigation/physiology , Adult , Awareness/physiology , Biological Clocks , Cognition/physiology , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Temporal Lobe/physiology
5.
N Engl J Med ; 388(8): 683-693, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36812432

ABSTRACT

BACKGROUND: Unilateral focused ultrasound ablation of the internal segment of globus pallidus has reduced motor symptoms of Parkinson's disease in open-label studies. METHODS: We randomly assigned, in a 3:1 ratio, patients with Parkinson's disease and dyskinesias or motor fluctuations and motor impairment in the off-medication state to undergo either focused ultrasound ablation opposite the most symptomatic side of the body or a sham procedure. The primary outcome was a response at 3 months, defined as a decrease of at least 3 points from baseline either in the score on the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, part III (MDS-UPDRS III), for the treated side in the off-medication state or in the score on the Unified Dyskinesia Rating Scale (UDysRS) in the on-medication state. Secondary outcomes included changes from baseline to month 3 in the scores on various parts of the MDS-UPDRS. After the 3-month blinded phase, an open-label phase lasted until 12 months. RESULTS: Of 94 patients, 69 were assigned to undergo ultrasound ablation (active treatment) and 25 to undergo the sham procedure (control); 65 patients and 22 patients, respectively, completed the primary-outcome assessment. In the active-treatment group, 45 patients (69%) had a response, as compared with 7 (32%) in the control group (difference, 37 percentage points; 95% confidence interval, 15 to 60; P = 0.003). Of the patients in the active-treatment group who had a response, 19 met the MDS-UPDRS III criterion only, 8 met the UDysRS criterion only, and 18 met both criteria. Results for secondary outcomes were generally in the same direction as those for the primary outcome. Of the 39 patients in the active-treatment group who had had a response at 3 months and who were assessed at 12 months, 30 continued to have a response. Pallidotomy-related adverse events in the active-treatment group included dysarthria, gait disturbance, loss of taste, visual disturbance, and facial weakness. CONCLUSIONS: Unilateral pallidal ultrasound ablation resulted in a higher percentage of patients who had improved motor function or reduced dyskinesia than a sham procedure over a period of 3 months but was associated with adverse events. Longer and larger trials are required to determine the effect and safety of this technique in persons with Parkinson's disease. (Funded by Insightec; ClinicalTrials.gov number, NCT03319485.).


Subject(s)
Globus Pallidus , High-Intensity Focused Ultrasound Ablation , Parkinson Disease , Humans , Dyskinesias/etiology , Dyskinesias/surgery , Globus Pallidus/surgery , Parkinson Disease/complications , Parkinson Disease/surgery , Treatment Outcome
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34921100

ABSTRACT

Impulsive overeating is a common, disabling feature of eating disorders. Both continuous deep brain stimulation (DBS) and responsive DBS, which limits current delivery to pathological brain states, have emerged as potential therapies. We used in vivo fiber photometry in wild-type, Drd1-cre, and A2a-cre mice to 1) assay subtype-specific medium spiny neuron (MSN) activity of the nucleus accumbens (NAc) during hedonic feeding of high-fat food, and 2) examine DBS strategy-specific effects on NAc activity. D1, but not D2, NAc GCaMP activity increased immediately prior to high-fat food approach. Responsive DBS triggered a GCaMP surge throughout the stimulation period and durably reduced high-fat intake. However, with continuous DBS, this surge decayed, and high-fat intake reemerged. Our results argue for a stimulation strategy-dependent modulation of D1 MSNs with a more sustained decrease in consumption with responsive DBS. This study illustrates the important role in vivo imaging can play in understanding effects of such novel therapies.


Subject(s)
Brain/physiology , Deep Brain Stimulation/methods , Feeding Behavior/physiology , Animals , Impulsive Behavior , Mice , Mice, Inbred C57BL , Nucleus Accumbens/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
7.
J Neurol Neurosurg Psychiatry ; 94(11): 879-886, 2023 11.
Article in English | MEDLINE | ID: mdl-37336643

ABSTRACT

BACKGROUND: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure. However, the safety and efficacy of this staged strategy is unknown. METHODS: This multicentre, retrospective cohort study included 268 patients consecutively treated with mesial temporal MRgLITT at 11 centres between 2012 and 2018. Seizure outcomes and complications of MRgLITT and any subsequent surgery are reported. Predictive value of preoperative variables for seizure outcome was assessed. RESULTS: Engel I seizure freedom was achieved in 55.8% (149/267) at 1 year, 52.5% (126/240) at 2 years and 49.3% (132/268) at the last follow-up ≥1 year (median 47 months). Engel I or II outcomes were achieved in 74.2% (198/267) at 1 year, 75.0% (180/240) at 2 years and 66.0% (177/268) at the last follow-up. Preoperative focal to bilateral tonic-clonic seizures were independently associated with seizure recurrence. Among patients with seizure recurrence, 14/21 (66.7%) became seizure-free after subsequent ATL and 5/10 (50%) after repeat MRgLITT at last follow-up≥1 year. CONCLUSIONS: MRgLITT is a viable treatment with durable outcomes for patients with drug-resistant mTLE evaluated at a comprehensive epilepsy centre. Although seizure freedom rates were lower than reported with ATL, this series represents the early experience of each centre and a heterogeneous cohort. ATL remains a safe and effective treatment for well-selected patients who fail MRgLITT.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Laser Therapy , Humans , Epilepsy, Temporal Lobe/surgery , Retrospective Studies , Seizures/surgery , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Treatment Outcome , Magnetic Resonance Imaging , Lasers
8.
Mol Psychiatry ; 27(8): 3374-3384, 2022 08.
Article in English | MEDLINE | ID: mdl-35697760

ABSTRACT

The ventromedial prefrontal cortex (vmPFC) to nucleus accumbens (NAc) circuit has been implicated in impulsive reward-seeking. This disinhibition has been implicated in obesity and often manifests as binge eating, which is associated with worse treatment outcomes and comorbidities. It remains unclear whether the vmPFC-NAc circuit is perturbed in impulsive eaters with obesity. Initially, we analyzed publicly available, high-resolution, normative imaging data to localize where vmPFC structural connections converged within the NAc. These structural connections were found to converge ventromedially in the presumed NAc shell subregion. We then analyzed multimodal clinical and imaging data to test the a priori hypothesis that the vmPFC-NAc shell circuit is linked to obesity in a sample of female participants that regularly engaged in impulsive eating (i.e., binge eating). Functionally, vmPFC-NAc shell resting-state connectivity was inversely related to body mass index (BMI) and decreased in the obese state. Structurally, vmPFC-NAc shell structural connectivity and vmPFC thickness were inversely correlated with BMI; obese binge-prone participants exhibited decreased vmPFC-NAc structural connectivity and vmPFC thickness. Finally, to examine a causal link to binge eating, we directly probed this circuit in one binge-prone obese female using NAc deep brain stimulation in a first-in-human trial. Direct stimulation of the NAc shell subregion guided by local behaviorally relevant electrophysiology was associated with a decrease in number of weekly episodes of uncontrolled eating and decreased BMI. This study unraveled vmPFC-NAc shell circuit aberrations in obesity that can be modulated to restore control over eating behavior in obesity.


Subject(s)
Nucleus Accumbens , Prefrontal Cortex , Female , Humans , Prefrontal Cortex/physiology , Impulsive Behavior/physiology , Reward , Obesity
9.
Neuroradiology ; 65(11): 1605-1617, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37269414

ABSTRACT

PURPOSE: This study aimed to assess and externally validate the performance of a deep learning (DL) model for the interpretation of non-contrast computed tomography (NCCT) scans of patients with suspicion of traumatic brain injury (TBI). METHODS: This retrospective and multi-reader study included patients with TBI suspicion who were transported to the emergency department and underwent NCCT scans. Eight reviewers, with varying levels of training and experience (two neuroradiology attendings, two neuroradiology fellows, two neuroradiology residents, one neurosurgery attending, and one neurosurgery resident), independently evaluated NCCT head scans. The same scans were evaluated using the version 5.0 of the DL model icobrain tbi. The establishment of the ground truth involved a thorough assessment of all accessible clinical and laboratory data, as well as follow-up imaging studies, including NCCT and magnetic resonance imaging, as a consensus amongst the study reviewers. The outcomes of interest included neuroimaging radiological interpretation system (NIRIS) scores, the presence of midline shift, mass effect, hemorrhagic lesions, hydrocephalus, and severe hydrocephalus, as well as measurements of midline shift and volumes of hemorrhagic lesions. Comparisons using weighted Cohen's kappa coefficient were made. The McNemar test was used to compare the diagnostic performance. Bland-Altman plots were used to compare measurements. RESULTS: One hundred patients were included, with the DL model successfully categorizing 77 scans. The median age for the total group was 48, with the omitted group having a median age of 44.5 and the included group having a median age of 48. The DL model demonstrated moderate agreement with the ground truth, trainees, and attendings. With the DL model's assistance, trainees' agreement with the ground truth improved. The DL model showed high specificity (0.88) and positive predictive value (0.96) in classifying NIRIS scores as 0-2 or 3-4. Trainees and attendings had the highest accuracy (0.95). The DL model's performance in classifying various TBI CT imaging common data elements was comparable to that of trainees and attendings. The average difference for the DL model in quantifying the volume of hemorrhagic lesions was 6.0 mL with a wide 95% confidence interval (CI) of - 68.32 to 80.22, and for midline shift, the average difference was 1.4 mm with a 95% CI of - 3.4 to 6.2. CONCLUSION: While the DL model outperformed trainees in some aspects, attendings' assessments remained superior in most instances. Using the DL model as an assistive tool benefited trainees, improving their NIRIS score agreement with the ground truth. Although the DL model showed high potential in classifying some TBI CT imaging common data elements, further refinement and optimization are necessary to enhance its clinical utility.


Subject(s)
Brain Injuries, Traumatic , Deep Learning , Hydrocephalus , Humans , Retrospective Studies , Brain Injuries, Traumatic/diagnostic imaging , Tomography, X-Ray Computed/methods , Neuroimaging/methods
10.
Epilepsia ; 63(4): 824-835, 2022 04.
Article in English | MEDLINE | ID: mdl-35213744

ABSTRACT

OBJECTIVE: Antiseizure drug (ASD) therapy can significantly impact quality of life for pediatric patients whose epilepsy remains refractory to medications and who experience neuropsychological side effects manifested by impaired cognitive and social development. Contemporary patterns of ASD reduction after pediatric epilepsy surgery across practice settings in the United States are sparsely reported outside of small series. We assessed timing and durability of ASD reduction after pediatric epilepsy surgery and associated effects on health care utilization. METHODS: We performed a retrospective analysis of 376 pediatric patients who underwent resective epilepsy surgery between 2007 and 2016 in the United States using the Truven MarketScan database. Filled ASD prescriptions during the pre- and postoperative periods were compared. Univariate and multivariate analyses identified factors associated with achieving a stable discontinuation of or reduction in number of ASDs. Health care utilization and costs were systematically compared. RESULTS: One hundred seventy-one patients (45.5%) achieved a >90-day ASD-free period after surgery, and 84 (22.3%) additional patients achieved a stable reduction in number of ASDs. Achieving ASD freedom was more common in patients undergoing total hemispherectomy (n = 21, p = .002), and less common in patients with tuberous sclerosis (p = .003). A higher number of preoperative ASDs was associated with a greater likelihood of achieving ASD reduction postoperatively (hazard ratio [HR]: 1.85, 95% confidence interval [CI]: 1.50-2.28), but was not associated with a significant difference in the likelihood of achieving ASD freedom (0.83, 95% CI: 0.49-1.39). Achieving an ASD-free period was associated with fewer hospital readmissions within the first year after surgery. SIGNIFICANCE: Patterns of ASD use and discontinuation after pediatric epilepsy surgery provide an unbiased surgical outcome endpoint extractable from administrative databases, where changes in seizure frequency are not captured. This quantitative measure can augment traditional surgical outcome scales, incorporating a significant clinical parameter associated with improved quality of life.


Subject(s)
Epilepsy , Quality of Life , Child , Cohort Studies , Cross-Sectional Studies , Epilepsy/drug therapy , Epilepsy/surgery , Humans , Retrospective Studies , Treatment Outcome , United States
11.
J Neurooncol ; 156(1): 17-22, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34383232

ABSTRACT

INTRODUCTION: Brain lesioning is a fundamental technique in the functional neurosurgery world. It has been investigated for decades and presented promising results long before novel pharmacological agents were introduced to treat movement disorders, psychiatric disorders, pain, and epilepsy. Ablative procedures were replaced by effective drugs during the 1950s and by Deep Brain Stimulation (DBS) in the 1990s as a reversible neuromodulation technique. In the last decade, however, the popularity of brain lesioning has increased again with the introduction of magnetic resonance-guided focused ultrasound (MRgFUS). OBJECTIVE: In this review, we will cover the current and emerging role of MRgFUS in functional neurosurgery. METHODS: Literature review from PubMed and compilation. RESULTS: Investigated since 1930, MRgFUS is a technology enabling targeted energy delivery at the convergence of mechanical sound waves. Based on technological advancements in phased array ultrasound transducers, algorithms accounting for skull penetration by sound waves, and MR imaging for targeting and thermometry, MRgFUS is capable of brain lesioning with sub-millimeter precision and can be used in a variety of clinical indications. CONCLUSION: MRgFUS is a promising technology evolving as a dominant tool in different functional neurosurgery procedures in movement disorders, psychiatric disorders, epilepsy, among others.


Subject(s)
Magnetic Resonance Imaging , Neurosurgical Procedures , Humans , Magnetic Resonance Imaging/methods , Neurosurgical Procedures/methods
12.
Neurosurg Focus ; 52(4): E3, 2022 04.
Article in English | MEDLINE | ID: mdl-35364580

ABSTRACT

OBJECTIVE: The natural history of seizure risk after brain tumor resection is not well understood. Identifying seizure-naive patients at highest risk for postoperative seizure events remains a clinical need. In this study, the authors sought to develop a predictive modeling strategy for anticipating postcraniotomy seizures after brain tumor resection. METHODS: The IBM Watson Health MarketScan Claims Database was canvassed for antiepileptic drug (AED)- and seizure-naive patients who underwent brain tumor resection (2007-2016). The primary event of interest was short-term seizure risk (within 90 days postdischarge). The secondary event of interest was long-term seizure risk during the follow-up period. To model early-onset and long-term postdischarge seizure risk, a penalized logistic regression classifier and multivariable Cox regression model, respectively, were built, which integrated patient-, tumor-, and hospitalization-specific features. To compare empirical seizure rates, equally sized cohort tertiles were created and labeled as low risk, medium risk, and high risk. RESULTS: Of 5470 patients, 983 (18.0%) had a postdischarge-coded seizure event. The integrated binary classification approach for predicting early-onset seizures outperformed models using feature subsets (area under the curve [AUC] = 0.751, hospitalization features only AUC = 0.667, patient features only AUC = 0.603, and tumor features only AUC = 0.694). Held-out validation patient cases that were predicted by the integrated model to have elevated short-term risk more frequently developed seizures within 90 days of discharge (24.1% high risk vs 3.8% low risk, p < 0.001). Compared with those in the low-risk tertile by the long-term seizure risk model, patients in the medium-risk and high-risk tertiles had 2.13 (95% CI 1.45-3.11) and 6.24 (95% CI 4.40-8.84) times higher long-term risk for postdischarge seizures. Only patients predicted as high risk developed status epilepticus within 90 days of discharge (1.7% high risk vs 0% low risk, p = 0.003). CONCLUSIONS: The authors have presented a risk-stratified model that accurately predicted short- and long-term seizure risk in patients who underwent brain tumor resection, which may be used to stratify future study of postoperative AED prophylaxis in highest-risk patient subpopulations.


Subject(s)
Anticonvulsants , Brain Neoplasms , Aftercare , Anticonvulsants/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Humans , Patient Discharge , Retrospective Studies , Seizures/etiology
13.
Neuromodulation ; 25(2): 253-262, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35125144

ABSTRACT

OBJECTIVES: Cocaine is the second most frequently used illicit drug worldwide (after cannabis), and cocaine use disorder (CUD)-related deaths increased globally by 80% from 1990 to 2013. There is yet to be a regulatory-approved treatment. Emerging preclinical evidence indicates that deep brain stimulation (DBS) of the nucleus accumbens may be a therapeutic option. Prior to expanding the costly investigation of DBS for treatment of CUD, it is important to ensure societal cost-effectiveness. AIMS: We conducted a threshold and cost-effectiveness analysis to determine the success rate at which DBS would be equivalent to contingency management (CM), recently identified as the most efficacious therapy for treatments of CUDs. MATERIALS AND METHODS: Quality of life, efficacy, and safety parameters for CM were obtained from previous literature. Costs were calculated from a societal perspective. Our model predicted the utility benefit based on quality-adjusted life-years (QALYs) and incremental-cost-effectiveness ratio resulting from two treatments on a one-, two-, and five-year timeline. RESULTS: On a one-year timeline, DBS would need to impart a success rate (ie, cocaine free) of 70% for it to yield the same utility benefit (0.492 QALYs per year) as CM. At no success rate would DBS be more cost-effective (incremental-cost-effectiveness ratio <$50,000) than CM during the first year. Nevertheless, as DBS costs are front loaded, DBS would need to achieve success rates of 74% and 51% for its cost-effectiveness to exceed that of CM over a two- and five-year period, respectively. CONCLUSIONS: We find DBS would not be cost-effective in the short term (one year) but may be cost-effective in longer timelines. Since DBS holds promise to potentially be a cost-effective treatment for CUDs, future randomized controlled trials should be performed to assess its efficacy.


Subject(s)
Cocaine , Deep Brain Stimulation , Parkinson Disease , Cost-Benefit Analysis , Humans , Parkinson Disease/therapy , Quality of Life , Quality-Adjusted Life Years
14.
Neurobiol Dis ; 154: 105348, 2021 07.
Article in English | MEDLINE | ID: mdl-33781923

ABSTRACT

The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.


Subject(s)
Anticipation, Psychological/physiology , Beta Rhythm/physiology , Parkinson Disease/psychology , Subthalamic Nucleus/physiology , Taste Perception/physiology , Weight Gain/physiology , Aged , Cues , Deep Brain Stimulation/methods , Female , Humans , Male , Middle Aged , Parkinson Disease/therapy , Photic Stimulation/methods , Taste/physiology
15.
Epilepsia ; 62(11): 2804-2813, 2021 11.
Article in English | MEDLINE | ID: mdl-34458986

ABSTRACT

OBJECTIVE: We evaluated the incremental cost-effectiveness of responsive neurostimulation (RNS) therapy for management of medically refractory focal onset seizures compared to pharmacotherapy alone. METHODS: We created and analyzed a decision model for treatment with RNS therapy versus pharmacotherapy using a semi-Markov process. We adopted a public payer perspective and used the maximum duration of 9 years in the RNS long-term follow-up study as the time horizon. We used seizure frequency data to model changes in quality of life and estimated the impact of RNS therapy on the annual direct costs of epilepsy care. The model also included expected mortality, adverse events, and costs related to system implantation, programming, and replacement. We interpreted our results against societal willingness-to-pay thresholds of $50 000, $100 000, and $200 000 per quality-adjusted life year (QALY). RESULTS: Based on three different calculated utility value estimates, the incremental cost-effectiveness ratio (ICER) for RNS therapy (with continued pharmacotherapy) compared to pharmacotherapy alone ranged between $28 825 and $46 596. Multiple sensitivity analyses yielded ICERs often below $50 000 per QALY and consistently below $100 000/QALY. SIGNIFICANCE: Modeling based on 9 years of available data demonstrates that RNS therapy for medically refractory epilepsy very likely falls within the range of cost-effectiveness, depending on method of utility estimation, variability in model inputs, and willingness-to-pay threshold. Several factors favor improved cost-effectiveness in the future. Given the increasing focus on delivering cost-effective care, we hope that this analysis will help inform clinical decision-making for this surgical option for refractory epilepsy.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Cost-Benefit Analysis , Drug Resistant Epilepsy/therapy , Follow-Up Studies , Humans , Quality of Life , Quality-Adjusted Life Years , Seizures
16.
Epilepsia ; 62(1): 74-84, 2021 01.
Article in English | MEDLINE | ID: mdl-33236777

ABSTRACT

OBJECTIVE: Intracranial electrographic localization of the seizure onset zone (SOZ) can guide surgical approaches for medically refractory epilepsy patients, especially when the presurgical workup is discordant or functional cortical mapping is required. Minimally invasive stereotactic placement of depth electrodes, stereoelectroencephalography (SEEG), has garnered increasing use, but limited data exist to evaluate its postoperative outcomes in the context of the contemporaneous availability of both SEEG and subdural electrode (SDE) monitoring. We aimed to assess the patient experience, surgical intervention, and seizure outcomes associated with these two epileptic focus mapping techniques during a period of rapid adoption of neuromodulatory and ablative epilepsy treatments. METHODS: We retrospectively reviewed 66 consecutive adult intracranial electrode monitoring cases at our institution between 2014 and 2017. Monitoring was performed with either SEEG (n = 47) or SDEs (n = 19). RESULTS: Both groups had high rates of SOZ identification (SEEG 91.5%, SDE 88.2%, P = .69). The majority of patients achieved Engel class I (SEEG 29.3%, SDE 35.3%) or II outcomes (SEEG 31.7%, SDE 29.4%) after epilepsy surgery, with no significant difference between groups (P = .79). SEEG patients reported lower median pain scores (P = .03) and required less narcotic pain medication (median = 94.5 vs 594.6 milligram morphine equivalents, P = .0003). Both groups had low rates of symptomatic hemorrhage (SEEG 0%, SDE 5.3%, P = .11). On multivariate logistic regression, undergoing resection or ablation (vs responsive neurostimulation/vagus nerve stimulation) was the only significant independent predictor of a favorable outcome (adjusted odds ratio = 25.4, 95% confidence interval = 3.48-185.7, P = .001). SIGNIFICANCE: Although both SEEG and SDE monitoring result in favorable seizure control, SEEG has the advantage of superior pain control, decreased narcotic usage, and lack of routine need for intensive care unit stay. Despite a heterogenous collection of epileptic semiologies, seizure outcome was associated with the therapeutic surgical modality and not the intracranial monitoring technique. The potential for an improved postoperative experience makes SEEG a promising method for intracranial electrode monitoring.


Subject(s)
Brain Mapping/methods , Electric Stimulation Therapy , Electrocorticography/methods , Epilepsy/physiopathology , Laser Therapy , Neurosurgical Procedures , Adult , Electroencephalography , Epilepsy/diagnosis , Epilepsy/therapy , Female , Humans , Male , Middle Aged , Prognosis , Prosthesis Implantation/methods , Retrospective Studies , Stereotaxic Techniques , Subdural Space , Treatment Outcome , Vagus Nerve Stimulation , Young Adult
17.
Proc Natl Acad Sci U S A ; 115(1): 192-197, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255043

ABSTRACT

Reward hypersensitization is a common feature of neuropsychiatric disorders, manifesting as impulsivity for anticipated incentives. Temporally specific changes in activity within the nucleus accumbens (NAc), which occur during anticipatory periods preceding consummatory behavior, represent a critical opportunity for intervention. However, no available therapy is capable of automatically sensing and therapeutically responding to this vulnerable moment in time when anticipation-related neural signals may be present. To identify translatable biomarkers for an off-the-shelf responsive neurostimulation system, we record local field potentials from the NAc of mice and a human anticipating conventional rewards. We find increased power in 1- to 4-Hz oscillations predominate during reward anticipation, which can effectively trigger neurostimulation that reduces consummatory behavior in mice sensitized to highly palatable food. Similar oscillations are present in human NAc during reward anticipation, highlighting the translational potential of our findings in the development of a treatment for a major unmet need.


Subject(s)
Consummatory Behavior/physiology , Delta Rhythm/physiology , Nucleus Accumbens/physiology , Animals , Female , Humans , Male , Mice
18.
Hum Brain Mapp ; 41(17): 4769-4788, 2020 12.
Article in English | MEDLINE | ID: mdl-32762005

ABSTRACT

Magnetic resonance-guided focused ultrasound (MRgFUS) ablation of the ventral intermediate (Vim) thalamic nucleus is an incisionless treatment for essential tremor (ET). The standard initial targeting method uses an approximate, atlas-based stereotactic approach. We developed a new patient-specific targeting method to identify an individual's Vim and the optimal MRgFUS target region therein for suppression of tremor. In this retrospective study of 14 ET patients treated with MRgFUS, we investigated the ability of WMnMPRAGE, a highly sensitive and robust sequence for imaging gray matter-white matter contrast, to identify the Vim, FUS ablation, and a clinically efficacious region within the Vim in individual patients. We found that WMnMPRAGE can directly visualize the Vim in ET patients, segmenting this nucleus using manual or automated segmentation capabilities developed by our group. WMnMPRAGE also delineated the ablation's core and penumbra, and showed that all patients' ablation cores lay primarily within their Vim segmentations. We found no significant correlations between standard ablation features (e.g., ablation volume, Vim-ablation overlap) and 1-month post-treatment clinical outcome. We then defined a group-based probabilistic target, which was nonlinearly warped to individual brains; this target was located within the Vim for all patients. The overlaps between this target and patient ablation cores correlated significantly with 1-month clinical outcome (r = -.57, p = .03), in contrast to the standard target (r = -.23, p = .44). We conclude that WMnMPRAGE is a highly sensitive sequence for segmenting Vim and ablation boundaries in individual patients, allowing us to find a novel tremor-associated center within Vim and potentially improving MRgFUS treatment for ET.


Subject(s)
Essential Tremor/surgery , High-Intensity Focused Ultrasound Ablation , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Ventral Thalamic Nuclei/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Outcome Assessment, Health Care , Surgery, Computer-Assisted
19.
Epilepsia ; 61(8): 1749-1757, 2020 08.
Article in English | MEDLINE | ID: mdl-32658325

ABSTRACT

OBJECTIVE: The RNS System is a direct brain-responsive neurostimulation system that is US Food and Drug Administration-approved for adults with medically intractable focal onset seizures based on safety and effectiveness data from controlled clinical trials. The purpose of this study was to retrospectively evaluate the real-world safety and effectiveness of the RNS System. METHODS: Eight comprehensive epilepsy centers conducted a chart review of patients treated with the RNS System for at least 1 year, in accordance with the indication for use. Data included device-related serious adverse events and the median percent change in disabling seizure frequency from baseline at years 1, 2, and 3 of treatment and at the most recent follow-up. RESULTS: One hundred fifty patients met the criteria for analysis. The median reduction in seizures was 67% (interquartile range [IQR] = 33%-93%, n = 149) at 1 year, 75% (IQR = 50%-94%, n = 93) at 2 years, 82% (IQR = 50%-96%, n = 38) at ≥3 years, and 74% (IQR = 50%-96%, n = 150) at last follow-up (mean = 2.3 years). Thirty-five percent of patients had a ≥90% seizure frequency reduction, and 18% of patients reported being clinically seizure-free at last follow-up. Seizure frequency reductions were similar regardless of patient age, age at epilepsy onset, duration of epilepsy, seizure onset in mesial temporal or neocortical foci, magnetic resonance imaging findings, prior intracranial monitoring, prior epilepsy surgery, or prior vagus nerve stimulation treatment. The infection rate per procedure was 2.9% (6/150 patients); five of the six patients had an implant site infection, and one had osteomyelitis. Lead revisions were required in 2.7% (4/150), and 2.0% (3/150) of patients had a subdural hemorrhage, none of which had long-lasting neurological consequences. SIGNIFICANCE: In this real-world experience, safety was similar and clinical seizure outcomes exceeded those of the prospective clinical trials, corroborating effectiveness of this therapy and suggesting that clinical experience has informed more effective programming.


Subject(s)
Drug Resistant Epilepsy/therapy , Electric Stimulation Therapy/methods , Epilepsies, Partial/therapy , Implantable Neurostimulators , Adolescent , Adult , Aged , Electrocorticography , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
20.
Epilepsy Behav ; 104(Pt A): 106905, 2020 03.
Article in English | MEDLINE | ID: mdl-32028127

ABSTRACT

BACKGROUND: For patients with medically refractory epilepsy, intracranial electrode monitoring can help identify epileptogenic foci. Despite the increasing utilization of stereoelectroencephalography (SEEG), the relative risks or benefits associated with the technique when compared with the traditional subdural electrode monitoring (SDE) remain unclear, especially in the pediatric population. Our aim was to compare the outcomes of pediatric patients who received intracranial monitoring with SEEG or SDE (grids and strips). METHODS: We retrospectively studied 38 consecutive pediatric intracranial electrode monitoring cases performed at our institution from 2014 to 2017. Medical/surgical history and operative/postoperative records were reviewed. We also compared direct inpatient hospital costs associated with the two procedures. RESULTS: Stereoelectroencephalography and SDE cohorts both showed high likelihood of identifying epileptogenic zones (SEEG: 90.9%, SDE: 87.5%). Compared with SDE, SEEG patients had a significantly shorter operative time (118.7 versus 233.4 min, P < .001) and length of stay (6.2 versus 12.3 days, P < .001), including days spent in the intensive care unit (ICU; 1.4 versus 5.4 days, P < .001). Stereoelectroencephalography patients tended to report lower pain scores and used significantly less narcotic pain medications (54.2 versus 197.3 mg morphine equivalents, P = .005). No complications were observed. Stereoelectroencephalography and SDE cohorts had comparable inpatient hospital costs (P = .47). CONCLUSION: In comparison with subdural electrode placement, SEEG results in a similarly favorable clinical outcome, but with reduced operative time, decreased narcotic usage, and superior pain control without requiring significantly higher costs. The potential for an improved postoperative intracranial electrode monitoring experience makes SEEG especially suitable for pediatric patients.


Subject(s)
Drug Resistant Epilepsy/surgery , Electrodes, Implanted , Electroencephalography/methods , Postoperative Care/methods , Stereotaxic Techniques , Adolescent , Child , Costs and Cost Analysis/methods , Drug Resistant Epilepsy/physiopathology , Electrodes, Implanted/trends , Electroencephalography/trends , Female , Humans , Intensive Care Units/trends , Male , Morphine/administration & dosage , Postoperative Care/trends , Retrospective Studies , Stereotaxic Techniques/trends , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL