Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nature ; 575(7784): 652-657, 2019 11.
Article in English | MEDLINE | ID: mdl-31748747

ABSTRACT

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Y/genetics , Genetic Predisposition to Disease/genetics , Genomic Instability/genetics , Leukocytes/pathology , Mosaicism , Adult , Aged , Computational Biology , Databases, Genetic , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , Neoplasms/genetics , United Kingdom
2.
BMC Genomics ; 25(1): 243, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443832

ABSTRACT

BACKGROUND: Mosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes enriched samples. RESULTS: Regulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and development of regulatory T cells. CONCLUSIONS: Here, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk for cancer observed among men with Y loss in leukocytes.


Subject(s)
Chromosomes, Human, Y , Neoplasms , Humans , Male , Chromosomes, Human, Y/genetics , T-Lymphocytes, Regulatory , Leukocytes, Mononuclear , Mosaicism
3.
RNA ; 26(11): 1654-1666, 2020 11.
Article in English | MEDLINE | ID: mdl-32763916

ABSTRACT

The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.


Subject(s)
Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Intellectual Disability/genetics , Mutation, Missense , RNA, Transfer/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Adenosine/metabolism , Adenosine Deaminase/chemistry , Adolescent , Binding Sites , Cells, Cultured , Child , Child, Preschool , Codon, Terminator , Female , Genetic Predisposition to Disease , Humans , Inosine/metabolism , Intellectual Disability/metabolism , Male , Pedigree , Protein Domains , RNA-Binding Proteins/chemistry , Exome Sequencing
4.
Cell Mol Life Sci ; 78(8): 4019-4033, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33837451

ABSTRACT

Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.


Subject(s)
Alzheimer Disease/genetics , Chromosomes, Human, Y , Mosaicism , Prostatic Neoplasms/genetics , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Killer Cells, Natural/metabolism , Leukocytes/metabolism , Male
5.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 10-20, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28990276

ABSTRACT

Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.


Subject(s)
Intellectual Disability/genetics , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , RNA Splicing Factors/genetics , Repressor Proteins/genetics , Exome , Humans , Intellectual Disability/metabolism , Mutation , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/metabolism , Neurodevelopmental Disorders/genetics , RNA Splicing Factors/metabolism , Repressor Proteins/metabolism , Exome Sequencing/methods
6.
Hum Mutat ; 38(10): 1394-1401, 2017 10.
Article in English | MEDLINE | ID: mdl-28581210

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a glycolipid that tethers more than 150 different proteins to the cell surface. Aberrations in biosynthesis of GPI anchors cause congenital disorders of glycosylation with clinical features including intellectual disability (ID), seizures, and facial dysmorphism. Here, we present two siblings with ID, cerebellar hypoplasia, cerebellar ataxia, early-onset seizures, and minor facial dysmorphology. Using exome sequencing, we identified a homozygous nonsense variant (NM_001127178.1:c.1640G>A, p.Trp547*) in the gene Phosphatidylinositol Glycan Anchor Biosynthesis, Class G (PIGG) in both the patients. Variants in several other GPI anchor synthesis genes lead to a reduced expression of GPI-anchored proteins (GPI-APs) that can be measured by flow cytometry. No significant differences in GPI-APs could be detected in patient granulocytes, consistent with recent findings. However, fibroblasts showed a reduced global level of GPI anchors and of specific GPI-linked markers. These findings suggest that fibroblasts might be more sensitive to pathogenic variants in GPI synthesis pathway and are well suited to screen for GPI-anchor deficiencies. Based on genetic and functional evidence, we confirm that pathogenic variants in PIGG cause an ID syndrome, and we find that loss of function of PIGG is associated with GPI deficiency.


Subject(s)
Cerebellar Ataxia/genetics , Cerebellum/abnormalities , Glycosylphosphatidylinositols/genetics , Intellectual Disability/genetics , Nervous System Malformations/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Cerebellar Ataxia/physiopathology , Cerebellum/physiopathology , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Flow Cytometry , Gene Expression , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/deficiency , Humans , Intellectual Disability/physiopathology , Male , Membrane Proteins/genetics , Nervous System Malformations/physiopathology , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Seizures/genetics , Seizures/physiopathology , Siblings , Exome Sequencing
7.
J Med Genet ; 53(10): 697-704, 2016 10.
Article in English | MEDLINE | ID: mdl-27334371

ABSTRACT

BACKGROUND: De novo mutations are a frequent cause of disorders related to brain development. We report the results of screening patients diagnosed with both epilepsy and intellectual disability (ID) using exome sequencing to identify known and new causative de novo mutations relevant to these conditions. METHODS: Exome sequencing was performed on 39 patient-parent trios to identify de novo mutations. Clinical significance of de novo mutations in genes was determined using the American College of Medical Genetics and Genomics standard guidelines for interpretation of coding variants. Variants in genes of unknown clinical significance were further analysed in the context of previous trio sequencing efforts in neurodevelopmental disorders. RESULTS: In 39 patient-parent trios we identified 29 de novo mutations in coding sequence. Analysis of de novo and inherited variants yielded a molecular diagnosis in 11 families (28.2%). In combination with previously published exome sequencing results in neurodevelopmental disorders, our analysis implicates HECW2 as a novel candidate gene in ID and epilepsy. CONCLUSIONS: Our results support the use of exome sequencing as a diagnostic approach for ID and epilepsy, and confirm previous results regarding the importance of de novo mutations in this patient group. The results also highlight the utility of network analysis and comparison to previous large-scale studies as strategies to prioritise candidate genes for further studies. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy and highlights HECW2 as a new candidate gene for neurodevelopmental disorders.


Subject(s)
Epilepsy/metabolism , Intellectual Disability/metabolism , Mutation , Ubiquitin-Protein Ligases/genetics , DNA Mutational Analysis , Epilepsy/genetics , Exome , Female , Humans , Intellectual Disability/genetics , Male , Syndrome
8.
Hum Mutat ; 37(9): 964-75, 2016 09.
Article in English | MEDLINE | ID: mdl-27328812

ABSTRACT

Chromatin-remodeling factors are required for a wide range of cellular and biological processes including development and cognition, mainly by regulating gene expression. As these functions would predict, deregulation of chromatin-remodeling factors causes various disease syndromes, including neurodevelopmental disorders. Recent reports have linked mutations in several genes coding for chromatin-remodeling factors to intellectual disability (ID). Here, we used exome sequencing and identified a nonsynonymous de novo mutation in BAZ1A (NM_182648.2:c.4043T > G, p.Phe1348Cys), encoding the ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), in a patient with unexplained ID. ACF1 has been previously reported to bind to the promoter of the vitamin D receptor (VDR)-regulated genes and suppress their expression. Our results show that the patient displays decreased binding of ACF1 to the promoter of the VDR-regulated gene CYP24A1. Using RNA sequencing, we find that the mutation affects the expression of genes involved in several pathways including vitamin D metabolism, Wnt signaling and synaptic formation. RNA sequencing of BAZ1A knockdown cells and Baz1a knockout mice revealed that BAZ1A carry out distinctive functions in different tissues. We also demonstrate that BAZ1A depletion influence the expression of genes important for nervous system development and function. Our data point to an important role for BAZ1A in neurodevelopment, and highlight a possible link for BAZ1A to ID.


Subject(s)
Intellectual Disability/genetics , Nervous System/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Amino Acid Substitution , Animals , Cell Line , Chromosomal Proteins, Non-Histone , Exome , Gene Regulatory Networks , Humans , Mice , Promoter Regions, Genetic , Receptors, Calcitriol/metabolism , Sequence Analysis, DNA , Sequence Analysis, RNA , Synaptic Potentials , Tissue Distribution , Wnt Signaling Pathway
9.
Hum Mol Genet ; 22(7): 1373-82, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23321059

ABSTRACT

Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.


Subject(s)
Astrocytes/metabolism , Gene Expression Regulation , Glial Fibrillary Acidic Protein/genetics , RNA-Binding Proteins/physiology , Amino Acid Sequence , Antipsychotic Agents/pharmacology , Cells, Cultured , Gene Expression/drug effects , Gene Knockdown Techniques , Glial Fibrillary Acidic Protein/metabolism , Haloperidol/pharmacology , Humans , Molecular Sequence Data , Primary Cell Culture , Protein Interaction Domains and Motifs , Protein Isoforms/physiology , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA-Binding Proteins/chemistry , Schizophrenia/metabolism , Sequence Analysis, RNA , Transcriptome
10.
Am J Hum Genet ; 90(3): 518-23, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22405087

ABSTRACT

Degeneration of the cerebrum, cerebellum, and retina in infancy is part of the clinical spectrum of lysosomal storage disorders, mitochondrial respiratory chain defects, carbohydrate glycosylation defects, and infantile neuroaxonal dystrophy. We studied eight individuals from two unrelated families who presented at 2-6 months of age with truncal hypotonia and athetosis, seizure disorder, and ophthalmologic abnormalities. Their course was characterized by failure to acquire developmental milestones and culminated in profound psychomotor retardation and progressive visual loss, including optic nerve and retinal atrophy. Despite their debilitating state, the disease was compatible with survival of up to 18 years. Laboratory investigations were normal, but the oxidation of glutamate by muscle mitochondria was slightly reduced. Serial brain MRI displayed progressive, prominent cerebellar atrophy accompanied by thinning of the corpus callosum, dysmyelination, and frontal and temporal cortical atrophy. Homozygosity mapping followed by whole-exome sequencing disclosed a Ser112Arg mutation in ACO2, encoding mitochondrial aconitase, a component of the Krebs cycle. Specific aconitase activity in the individuals' lymphoblasts was severely reduced. Under restrictive conditions, the mutant human ACO2 failed to complement a yeast ACO1 deletion strain, whereas the wild-type human ACO2 succeeded, indicating that this mutation is pathogenic. Thus, a defect in mitochondrial aconitase is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. In the absence of noninvasive biomarkers, determination of the ACO2 sequence or of aconitase activity in lymphoblasts are warranted in similarly affected individuals, based on clinical and neuroradiologic grounds.


Subject(s)
Aconitate Hydratase/genetics , Cerebellum/abnormalities , Mitochondria/enzymology , Mutation , Neurodegenerative Diseases/genetics , Retina/abnormalities , Adolescent , Atrophy/enzymology , Atrophy/genetics , Cerebellum/enzymology , Child , Child, Preschool , Exome , Exons , Female , Genotype , Glutamic Acid/metabolism , Heterozygote , Homozygote , Humans , Infant , Magnetic Resonance Imaging/methods , Male , Mitochondria/genetics , Neurodegenerative Diseases/enzymology , Oxidation-Reduction , Polymorphism, Single Nucleotide , Retina/enzymology
11.
Nucleic Acids Res ; 41(1): e6, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-22941640

ABSTRACT

RNA sequencing has become an important method to perform hypothesis-free characterization of global gene expression. One of the limitations of RNA sequencing is that most sequence reads represent highly expressed transcripts, whereas low level transcripts are challenging to detect. To combine the benefits of traditional expression arrays with the advantages of RNA sequencing, we have used whole exome enrichment prior to sequencing of total RNA. We show that whole exome capture can be successfully applied to cDNA to study the transcriptional landscape in human tissues. By introducing the exome enrichment step, we are able to identify transcripts present at very low levels, which are below the level of detection in conventional RNA sequencing. Although the enrichment increases the ability to detect presence of transcripts, it also lowers the accuracy of quantification of expression levels. Our results yield a large number of novel exons and splice isoforms, suggesting that conventional RNA sequencing methods only detect a small fraction of the full transcript diversity. We propose that whole exome enrichment of RNA is a suitable strategy for genome-wide discovery of novel transcripts, alternative splice variants and fusion genes.


Subject(s)
Alternative Splicing , Exome , RNA Isoforms/chemistry , Sequence Analysis, RNA/methods , Exons , Humans , Polymorphism, Single Nucleotide , RNA Splice Sites , Transcriptome
13.
BMC Biotechnol ; 13: 99, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24225116

ABSTRACT

BACKGROUND: The starting material for RNA sequencing (RNA-seq) studies is usually total RNA or polyA+ RNA. Both forms of RNA represent heterogeneous pools of RNA molecules at different levels of maturation and processing. Such heterogeneity, in addition to the biases associated with polyA+ purification steps, may influence the analysis, sensitivity and the interpretation of RNA-seq data. We hypothesize that subcellular fractions of RNA may provide a more accurate picture of gene expression. RESULTS: We present results for sequencing of cytoplasmic and nuclear RNA after cellular fractionation of tissue samples. In comparison with conventional polyA+ RNA, the cytoplasmic RNA contains a significantly higher fraction of exonic sequence, providing increased sensitivity in expression analysis and splice junction detection, and in improved de novo assembly of RNA-seq data. Conversely, the nuclear fraction shows an enrichment of unprocessed RNA compared with total RNA-seq, making it suitable for analysis of nascent transcripts and RNA processing dynamics. CONCLUSION: Our results show that cellular fractionation is a more rapid and cost effective approach than conventional polyA+ enrichment when studying mature RNAs. Thus, RNA-seq of separated cytosolic and nuclear RNA can significantly improve the analysis of complex transcriptomes from mammalian tissues.


Subject(s)
RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Cell Line , Cytoplasm/genetics , Exons , Gene Expression , Gene Expression Profiling , Humans , Introns , RNA Splicing , RNA, Messenger/metabolism , Sequence Alignment , Transcriptome
14.
Epilepsia ; 53(8): 1436-40, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22690745

ABSTRACT

PURPOSE: The molecular etiology of primary intractable epilepsy in infancy is largely unknown. We studied a nonconsanguineous Moroccan-Jewish family, where three of their seven children presented with intractable seizures and died at 18-36 months. METHODS: Homozygous regions were searched using 250 K DNA single nucleotide polymorphism (SNP) array. The sequence of 50 Mb exome of a single patient was determined using SOLiD 5500XL deep sequencing analyzer. KEY FINDINGS: A single homozygous 11.3 Mb genomic region on chromosome 6 was linked to the disease in this family. This region contained 110 genes encoding a total of 1,000 exons. Whole exome sequencing revealed a single pathogenic homozygous variant within the critical region. The mutation, Phe229Leu in the EFHC1 gene was previously shown, in a carrier state, to be associated with juvenile myoclonic epilepsy. SIGNIFICANCE: Although heterozygosity for the Phe229Leu mutation is known to be associated with a relatively benign form of epilepsy in adolescence; homozygosity for the same mutation is associated with lethal epilepsy of infancy. Given the considerable carrier rate of this mutation worldwide, the sequence of the EFHC1 gene should be determined in all patients with primary intractable epilepsy in infancy.


Subject(s)
Calcium-Binding Proteins/genetics , Epilepsy/genetics , Polymorphism, Single Nucleotide/genetics , Child, Preschool , Exome/genetics , Fatal Outcome , Homozygote , Humans , Infant , Infant, Newborn , Male , Pedigree
15.
Science ; 377(6603): 292-297, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857592

ABSTRACT

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Subject(s)
Aging , Chromosome Deletion , Heart Failure , Hematopoietic Stem Cells , Myocardium , Y Chromosome , Aging/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Fibrosis , Heart Failure/genetics , Heart Failure/therapy , Macrophages , Male , Mice , Mosaicism , Myocardium/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Y Chromosome/genetics
16.
Cell Biosci ; 11(1): 205, 2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34895331

ABSTRACT

BACKGROUND: Mosaic loss of Y chromosome (LOY) is the most common somatic change that occurs in circulating white blood cells of older men. LOY in leukocytes is associated with increased risk for all-cause mortality and a range of common disease such as hematological and non-hematological cancer, Alzheimer's disease, and cardiovascular events. Recent genome-wide association studies identified up to 156 germline variants associated with risk of LOY. The objective of this study was to use these variants to calculate a novel polygenic risk score (PRS) for LOY, and to assess the predictive performance of this score in a large independent population of older men. RESULTS: We calculated a PRS for LOY in 5131 men aged 70 years and older. Levels of LOY were estimated using microarrays and validated by whole genome sequencing. After adjusting for covariates, the PRS was a significant predictor of LOY (odds ratio [OR] = 1.74 per standard deviation of the PRS, 95% confidence intervals [CI] 1.62-1.86, p < 0.001). Men in the highest quintile of the PRS distribution had > fivefold higher risk of LOY than the lowest (OR = 5.05, 95% CI 4.05-6.32, p < 0.001). Adding the PRS to a LOY prediction model comprised of age, smoking and alcohol consumption significantly improved prediction (AUC = 0.628 [CI 0.61-0.64] to 0.695 [CI 0.67-0.71], p < 0.001). CONCLUSIONS: Our results suggest that a PRS for LOY could become a useful tool for risk prediction and targeted intervention for common disease in men.

17.
Genes (Basel) ; 12(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34440415

ABSTRACT

Schizophrenia is a genetically complex neuropsychiatric disorder with largely unresolved mechanisms of pathology. Identification of genes and pathways associated with schizophrenia is important for understanding the development, progression and treatment of schizophrenia. In this study, pathways associated with schizophrenia were explored at the level of gene expression. The study included post-mortem brain tissue samples from 68 schizophrenia patients and 44 age and sex-matched control subjects. Whole transcriptome poly-A selected paired-end RNA sequencing was performed on tissue from the prefrontal cortex and orbitofrontal cortex. RNA expression differences were detected between case and control individuals, focusing both on single genes and pathways. The results were validated with RT-qPCR. Significant differential expression between patient and controls groups was found for 71 genes. Gene ontology analysis of differentially expressed genes revealed an up-regulation of multiple genes in immune response among the patients (corrected p-value = 0.004). Several genes in the category belong to the complement system, including C1R, C1S, C7, FCN3, SERPING1, C4A and CFI. The increased complement expression is primarily driven by a subgroup of patients with increased expression of immune/inflammatory response genes, pointing to important differences in disease etiology within the patient group. Weighted gene co-expression network analysis highlighted networks associated with both synaptic transmission and activation of the immune response. Our results demonstrate the importance of immune-related pathways in schizophrenia and provide evidence for elevated expression of the complement cascade as an important pathway in schizophrenia pathology.


Subject(s)
Complement System Proteins/metabolism , Gene Expression Profiling , Postmortem Changes , Schizophrenia/metabolism , Up-Regulation , Adult , Aged , Female , Gene Ontology , Humans , Male , Middle Aged , Schizophrenia/genetics , Schizophrenia/pathology
18.
Sci Rep ; 11(1): 15160, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312421

ABSTRACT

Mosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


Subject(s)
12E7 Antigen/blood , Chromosomes, Human, Y/genetics , Leukocytes/immunology , Mosaicism , 12E7 Antigen/deficiency , 12E7 Antigen/genetics , Aged , Aged, 80 and over , Aging/blood , Aging/genetics , Aging/immunology , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Chromosomes, Human, Y/immunology , Chromosomes, Human, Y/metabolism , Humans , Leukocytes/metabolism , Male , Mutation , RNA, Messenger/blood , RNA, Messenger/genetics , Single-Cell Analysis
19.
Eur J Hum Genet ; 28(3): 349-357, 2020 03.
Article in English | MEDLINE | ID: mdl-31654039

ABSTRACT

Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer's disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.


Subject(s)
Aging/genetics , Chromosome Deletion , Chromosomes, Human, Y/genetics , Mosaicism , Polymorphism, Genetic , Aging/blood , Blood Cells/metabolism , Humans , Male
20.
BMC Med Genomics ; 12(1): 156, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31694657

ABSTRACT

BACKGROUND: Non-syndromic intellectual disability is genetically heterogeneous with dominant, recessive and complex forms of inheritance. We have performed detailed genetic studies in a large multi-generational Swedish family, including several members diagnosed with non-syndromic intellectual disability. Linkage analysis was performed on 22 family members, nine affected with mild to moderate intellectual disability and 13 unaffected family members. METHODS: Family members were analyzed with Affymetrix Genome-Wide Human SNP Array 6.0 and the genetic data was used to detect copy number variation and to perform genome wide linkage analysis with the SNP High Throughput Linkage analysis system and the Merlin software. For the exome sequencing, the samples were prepared using the Sure Select Human All Exon Kit (Agilent Technologies, Santa Clara, CA, USA) and sequenced using the Ion Proton™ System. Validation of identified variants was performed with Sanger sequencing. RESULTS: The linkage analysis results indicate that intellectual disability in this family is genetically heterogeneous, with suggestive linkage found on chromosomes 1q31-q41, 4q32-q35, 6p25 and 14q24-q31 (LOD scores of 2.4, simulated p-value of 0.000003 and a simulated genome-wide p-value of 0.06). Exome sequencing was then performed in 14 family members and 7 unrelated individuals from the same region. The analysis of coding variation revealed a pathogenic and candidate variants in different branches of the family. In three patients we find a known homozygous pathogenic mutation in the Homo sapiens solute carrier family 17 member 5 (SLC17A5), causing Salla disease. We also identify a deletion overlapping KDM3B and a duplication overlapping MAP3K4 and AGPAT4, both overlapping variants previously reported in developmental disorders. CONCLUSIONS: DNA samples from the large family analyzed in this study were initially collected based on a hypothesis that affected members shared a major genetic risk factor. Our results show that a complex phenotype such as mild intellectual disability in large families from genetically isolated populations may show considerable genetic heterogeneity.


Subject(s)
Exome/genetics , Genetic Linkage , Intellectual Disability/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , DNA Copy Number Variations , Humans , Intellectual Disability/pathology , Jumonji Domain-Containing Histone Demethylases/genetics , Karyotyping , MAP Kinase Kinase Kinase 4/genetics , Organic Anion Transporters/genetics , Pedigree , Polymorphism, Single Nucleotide , Sweden , Symporters/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL