Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Opt Express ; 25(6): 5962-5971, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28381066

ABSTRACT

The demands for a power-saving mode for displaying static images are ubiquitous not only in portable devices but also in price tags and advertising panels. At a low-frequency driving in liquid crystal displays (LCDs) for low-power consumption, the flexoelectric effect arises even in calamitic liquid crystals and the optical appearance of this physical phenomenon is found to be unusually large, being noticed as an image-flickering. Although the inherent integrated optical transmittance of in-plane switching (IPS) mode is relatively lower than that of fringe-field switching (FFS) mode, the IPS mode shows no static image-flickering but an optical spike (the so-called optical bounce), at the transient moment between signal positive and negative frames. Here, we demonstrate an IPS mode using negative dielectric anisotropy of liquid crystals (Δε < 0) and fine-patterned electrodes (the width w of and the space l between electrodes ≤ 3 µm) with reduced operation voltage (up to 40.7% to a conventional FFS mode with Δε < 0), reduced optical bounce (up to 4.4%. to a conventional FFS mode with Δε < 0) and enhanced transmittance (up to 32.1% to a conventional IPS mode with Δε > 0). We believe the result will contribute not only to the scientific understanding of the optical appearance of flexoelectric effect but also pave the way for engineering of a superior low-power consumption LCD.

2.
Opt Express ; 24(26): 29568-29576, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059343

ABSTRACT

The development of low-frequency-driven liquid crystal displays (LCDs) has recently received intense attention to open up low-power consumption display devices, such as portable displays, advertising panels and price tags. In fringe-field switching (FFS) LCD mode, a unidirectional electric field gives rise to head-tail symmetry breaking in liquid crystals, so that the flexoelectric effect, a coupling between the elastic distortion and the electric polarization, becomes enormously significant. The effect is thus linked to an unusual optical effect, which badly damages the quality of images by image-flickering, and this image-flickering is mainly caused by transmittance difference between the applied signal frames. Here, we intensively investigate the mechanism of the transmittance deviation, and propose an essential and promising approach to solve the poor image-quality, that is, symmetrization of electric fields between the frames. The result of our work clearly demonstrates that the field-symmetry is crucial to reduce the image-flickering, and it can be obtained by optimization of the thickness of an insulation layer with respect to the ratio of the space between electrodes to the electrode width.

SELECTION OF CITATIONS
SEARCH DETAIL