Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Toxicol Appl Pharmacol ; 461: 116400, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36702314

ABSTRACT

Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1ß inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.


Subject(s)
Lung , Macrophages, Alveolar , Mice , Animals , Inflammation/chemically induced , Inflammation/metabolism , Silicon Dioxide/chemistry
2.
Inflamm Res ; 70(3): 359-373, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33566171

ABSTRACT

OBJECTIVE AND DESIGN: The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS: Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS: DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION: The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Inflammation/diet therapy , Lung Diseases/diet therapy , Animals , Cells, Cultured , Cytokines/immunology , Female , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Diseases/chemically induced , Lung Diseases/immunology , Lung Diseases/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Male , Mice, Inbred BALB C , Nanotubes, Carbon , Phenotype , Silicon Dioxide
3.
Part Fibre Toxicol ; 18(1): 16, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771183

ABSTRACT

BACKGROUND: A very pure multi-walled carbon nanotube (MWCNT) that was shown to have very low toxicity in vitro, was evaluated for lung and systemic effects and distribution following inhalation exposure. METHODS: B6C3F1/N mice were exposed to varying doses (0, 0.06, 0.2, and 0.6 mg/m3) of the (99.1% carbon) MWCNT by inhalation for 30 days (excluding weekends). Ten days following the last exposure, the lungs and spleen were harvested and processed for histology and immune cell population assessment. In addition, lung lavage cells and fluid were analyzed. Stimulated Raman scattering (SRS) was used to identify particles in the lungs, spleen, kidneys, liver, mediastinal and brachial lymph nodes, and olfactory bulb. Splenic tissue sections were stained with hematoxylin and eosin (H&E) for light microscopic histopathology assessment. Blood plasma was analyzed for cytokines and cathepsins. A section of the spleen was processed for RNA isolation and relative gene expression for 84 inflammation-related cytokines/chemokines. RESULTS: Following MWCNT exposure, particles were clearly evident in the lungs, spleens, lymph nodes and olfactory bulbs, (but not livers or kidneys) of exposed mice in a dose-dependent manner. Examination of the lavaged lung cells was unremarkable with no significant inflammation indicated at all particle doses. In contrast, histological examination of the spleen indicated the presence of apoptotic bodies within T cells regions of the white pulp area. Isolated splenic leukocytes had significant changes in various cells including an increased number of proinflammatory CD11b+Ly6C+ splenic cells. The gene expression studies confirmed this observation as several inflammation-related genes were upregulated particularly in the high dose exposure (0.6 mg/m3). Blood plasma evaluations showed a systemic down-regulation of inflammatory cytokines and a dose-dependent up-regulation of lysosomal cathepsins. CONCLUSIONS: The findings in the lungs were consistent with our hypothesis that this MWCNT exposure would result in minimal lung inflammation and injury. However, the low toxicity of the MWCNT to lung macrophages may have contributed to enhanced migration of the MWCNT to the spleen through the lymph nodes, resulting in splenic toxicity and systemic changes in inflammatory mediators.


Subject(s)
Inhalation Exposure , Nanotubes, Carbon , Particulate Matter/toxicity , Pneumonia , Animals , Bronchoalveolar Lavage Fluid , Lung , Mice , Mice, Inbred Strains
4.
J Toxicol Environ Health A ; 84(4): 152-172, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33148135

ABSTRACT

Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Membrane Permeability/drug effects , Docosahexaenoic Acids/pharmacology , Lysosomes/drug effects , Macrophages/drug effects , Particulate Matter/toxicity , Phagosomes/drug effects , Animals , Cell Membrane Permeability/physiology , Down-Regulation , Female , Lysosomes/physiology , Macrophages/physiology , Male , Mice , Mice, Inbred BALB C , Phagosomes/physiology
5.
Inhal Toxicol ; 32(1): 24-38, 2020 01.
Article in English | MEDLINE | ID: mdl-32028803

ABSTRACT

Objective: In this study, we compared in vitro and in vivo bioactivity of nitrogen-doped multi-walled carbon nanotubes (NDMWCNT) to MWCNT to test the hypothesis that nitrogen doping would alter bioactivity.Materials and Methods: High-resolution transmission electron microscopy (TEM) confirmed the multilayer structure of MWCNT with an average layer distance of 0.36 nm, which was not altered by nitrogen doping: the nanomaterials had similar widths and lengths. In vitro studies with THP-1 cells and alveolar macrophages from C57BL/6 mice demonstrated that NDMWCNT were less cytotoxic and stimulated less IL-1ß release compared to MWCNT. For in vivo studies, male C57BL/6J mice received a single dose of dispersion medium (DM), 2.5, 10 or 40 µg/mouse of NDMWCNT, or 40 µg/mouse of MWCNT by oropharyngeal aspiration. Animals were euthanized between 1 and 7 days post-exposure for whole lung lavage (WLL) studies.Results and Discussion: NDMWCNT caused time- and dose-dependent pulmonary inflammation. However, it was less than that caused by MWCNT. Activation of the NLRP3 inflammasome was assessed in particle-exposed mice by determining cytokine production in WLL fluid at 1 day post-exposure. Compared to DM-exposed mice, IL-1ß and IL-18 were significantly increased in MWCNT- and NDMWCNT-exposed mice, but the increase caused by NDMWCNT was less than MWCNT. At 56 days post-exposure, histopathology determined lung fibrosis in MWCNT-exposed mice was greater than NDMWCNT-exposed mice.Conclusions: These data indicate nitrogen doping of MWCNT decreases their bioactivity, as reflected with lower in vitro and in vivo toxicity inflammation and lung disease. The lower activation of the NLRP3 inflammasome may be responsible. Abbreviations: NDMWCNT: nitrogen-doped multi-walled carbon nanotubes; MWCNT: multi-walled carbon nanotubes; TEM: transmission electron microscopy; HRTEM: high resolution transmission electron microscopy; IL-1ß: interleukin-1ß; DM: dispersion medium; WLL: whole lung lavage; IL-18: interleukin-18; GSD: geometric standard deviation; XPS: X-ray photoelectron spectroscopy; SEM: standard error of the mean; PMA: phorbol 12-myristate 13-acetate; LPS: lipopolysacharride; LDH: lactate dehydrogenase; AM: alveolar macrophage; PMN: polymorphonuclear leukocyte.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Nitrogen/toxicity , Pneumonia/chemically induced , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/analysis , Dose-Response Relationship, Drug , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Lung/immunology , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Male , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Particle Size , Pneumonia/immunology , Pneumonia/pathology , Surface Properties , THP-1 Cells , Time Factors
6.
Chem Res Toxicol ; 32(8): 1545-1553, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31265265

ABSTRACT

Diversity in physicochemical properties of engineered multiwalled carbon nanotubes (MWCNTs) increases the complexity involved in interpreting toxicity studies of these materials. Studies indicate that epigenetic changes could be at least partially involved in MWCNTs-induced pro-inflammatory and fibrotic lung pathology. Therefore, we examined distinct methylation changes in response to MWCNTs of varied sizes to identify potential epigenetic biomarkers of MWCNTs exposure and disease progression. C57BL/6 mice were exposed via oropharyngeal instillation to a single dose (50 µg) to one of three differently sized MWCNTs: "narrow short" (NS), "wide short" (WS), and "narrow long" (NL). Vehicle-treated control mice received dispersion media (DM) only. Whole lung lavage fluid (LLF) and lung tissue were collected 24 h and 7 days postexposure to evaluate pro-inflammatory cytokines, epigenetic, or histological responses at acute and subchronic intervals, respectively. Luminometric methylation assay and pyrosequencing were used to measure global DNA methylation as well as promoter methylation of inflammation and fibrosis-related genes, respectively. Pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured using enzyme-linked immunosorbant assay, while airway thickening and interstitial collagen accumulation were measured in 7-day lung tissue using laser scanning cytometry. Distinct patterns of methylation (i.e., IL-1ß, IL-6, and TNF-α) among the different sized MWCNTs at 24 h postexposure corresponded to some pro-inflammatory cytokine measurements from whole LLF. Fibrosis-related gene, Thy-1, was significantly hypermethylated after exposures to WS and NL MWCNTs, while only NL MWCNTs induced significantly lower global DNA methylation. After 7 days, a hierarchy in airway thickness and interstitial collagen deposition was observed: NS < WS < NL. However, only airway thickness was significantly greater in the WS and NL MWCNTs-exposed groups than the DM-exposed group. These data suggest that methylation changes could be involved in the initial immune response of inflammation and tissue remodeling that precedes lung disease in response to different MWCNTs sizes.


Subject(s)
Disease Models, Animal , Lung Injury/metabolism , Nanotubes, Carbon/chemistry , Pneumonia/metabolism , Animals , Cytokines/analysis , DNA/genetics , DNA Methylation/genetics , Female , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Particle Size , Pneumonia/pathology , Surface Properties
7.
Toxicol Pathol ; 46(1): 62-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28946794

ABSTRACT

Multiwalled carbon nanotube (MWCNT) toxicity after inhalation has been associated with size, aspect ratio, rigidity, surface modification, and reactive oxygen species production. In this study, we investigated a series of cup-stacked MWCNT prepared as variants of the Creos 24PS. Mechanical chopping produced a short version (AR10) and graphitization to remove active reaction sites by extreme heat (2,800°C; Creos 24HT) to test the contribution of length and alteration of potential reaction sites to toxicity. The 3 MWCNT variants were tested in vitro in a human macrophage-like cell model and with C57BL/6 alveolar macrophages for dose-dependent toxicity and NLRP3 inflammasome activation. The 24PS and 24HT variants showed significant dose-dependent toxicity and inflammasome activation. In contrast, the AR10 variant showed no toxicity or bioactivity at any concentration tested. The in vivo results reflected those observed in vitro, with the 24PS and 24HT variants resulting in acute inflammation, including elevated polymorphonuclear counts, Interleukin (IL)-18, cathepsin B, and lactate dehydrogenase in isolated lung lavage fluid from mice exposed to 40 µg MWCNT. Taken together, these data indicate that length, but not the absence of proposed reaction sites, on the MWCNT influences particle bioactivity.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Animals , Humans , Male , Mice , Mice, Inbred C57BL
8.
Inhal Toxicol ; 30(11-12): 429-438, 2018.
Article in English | MEDLINE | ID: mdl-30618316

ABSTRACT

OBJECTIVE: The toxicity of silver nanomaterials in various forms has been extensively evaluated, but the toxicity of silver nanocarbon composites is less well understood. Therefore, silver-carbon nanotube composites (Ag-MWCNT-COOH) and silver-graphene oxide composites (Ag-GO) were synthesized by microwave irradiation and evaluated in two in vitro cell models. MATERIALS/METHODS: Toxicity of silver nanosphere (Ag), Ag-MWCNT-COOH and Ag-GO were analyzed by MTS assay and LDH assay in primary C57BL/6 murine alveolar macrophages and human THP-1 cells. Activation of NLRP3 inflammasome by particle variants in these models was done by proxy using LPS co-culture and IL-1ß release. RESULTS: The results depended on the model, as the amount of Ag on the modified carbon resulted in slightly increased toxicity for the murine cells, but did not appear to affect toxicity in the human cell model. IL-1ß release from carbon particle-exposures was decreased by the presence of Ag in both cell models. Suspensions of Ag-MWCNT-COOH, Ag-GO and Ag in artificial lysosomal fluid were prepared and ICP-MS was used to detect Ag ions concentration in three silver suspension/solutions. The amount of Ag ions released from Ag-MWCNT-COOH and Ag-GO were similar, which were both lower than that of Ag nanospheres. CONCLUSIONS: The results suggest the bioactivity of silver composites may be related to the amount of Ag ions released, which can be dependent on the cell model under investigation.


Subject(s)
Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanotubes, Carbon/chemistry , Oxides/chemistry , Silver/chemistry , Silver/toxicity , Adsorption , Animals , Cells, Cultured , Humans , Macrophages/drug effects , Male , Mice, Inbred C57BL , THP-1 Cells
9.
Int J Mol Sci ; 19(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370073

ABSTRACT

Functionalization has been shown to alter toxicity of multi-walled carbon nanotube (MWCNT) in several studies. This study varied the degree of functionalization (viz., amount of MWCNT surface carboxylation) to define the relationship between the extent of carboxylation and effects in a variety of in vitro cell models and short-term ex vivo/in vivo particle exposures. Studies with vitamin D3 plus phorbol ester transformed THP-1 macrophages demonstrated that functionalization, regardless of amount, corresponded with profoundly decreased NLRP3 inflammasome activation. However, all MWCNT variants were slightly toxic in this model. Alternatively, studies with A549 epithelial cells showed some varied effects. For example, IL-33 and TNF-α release were related to varying amounts of functionalization. For in vivo particle exposures, autophagy of alveolar macrophages, measured using green fluorescent protein (GFP)- fused-LC3 transgenic mice, increased for all MWCNT tested three days after exposure, but, by Day 7, autophagy was clearly dependent on the amount of carboxylation. The instilled source MWCNT continued to produce cellular injury in alveolar macrophages over seven days. In contrast, the more functionalized MWCNT initially showed similar effects, but reduced over time. Dark-field imaging showed the more functionalized MWCNTs were distributed more uniformly throughout the lung and not isolated to macrophages. Taken together, the results indicated that in vitro and in vivo bioactivity of MWCNT decreased with increased carboxylation. Functionalization by carboxylation eliminated the bioactive potential of the MWCNT in the exposure models tested. The observation that maximally functionalized MWCNT distribute more freely throughout the lung with the absence of cellular damage, and extended deposition, may establish a practical use for these particles as a safer alternative for unmodified MWCNT.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/adverse effects , Animals , Autophagy , Cell Line , Decarboxylation , Humans , Interleukins/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Proteasome Endopeptidase Complex/drug effects , Tumor Necrosis Factor-alpha/metabolism
10.
Toxicol Appl Pharmacol ; 318: 58-68, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28126413

ABSTRACT

NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.


Subject(s)
Chemical Engineering/methods , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanoparticles/metabolism , Phagosomes/metabolism , Silicon Dioxide/metabolism , Animals , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Cells, Cultured , Female , Inflammasomes/metabolism , Intracellular Membranes/metabolism , Lysosomes/chemistry , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/chemistry , Phagosomes/chemistry , Silicon Dioxide/chemistry
11.
Article in English | MEDLINE | ID: mdl-28632040

ABSTRACT

Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.


Subject(s)
Cathepsins/metabolism , Lysosomes/metabolism , Nanostructures/administration & dosage , Animals , Cathepsins/antagonists & inhibitors , Environmental Exposure/adverse effects , Humans , Inflammation/etiology , Inflammation/prevention & control , Inhalation Exposure/adverse effects , Nanostructures/adverse effects , Occupational Exposure/adverse effects , Particle Size
12.
Inhal Toxicol ; 29(10): 435-442, 2017 08.
Article in English | MEDLINE | ID: mdl-29124997

ABSTRACT

Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10-12 and 20 weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.


Subject(s)
DNA Methylation , Lung Diseases/etiology , Tobacco Smoke Pollution/adverse effects , Animals , Female , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects
13.
Toxicol Appl Pharmacol ; 309: 101-10, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27594529

ABSTRACT

Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.


Subject(s)
Autophagy , Macrophages, Alveolar/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicon Dioxide/toxicity , Animals , Female , HMGB1 Protein/metabolism , Lung/pathology , Macrophages, Alveolar/immunology , Male , Mice , Mice, Transgenic
14.
Part Fibre Toxicol ; 11: 43, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25179214

ABSTRACT

BACKGROUND: Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). METHODS: The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1ß release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. RESULTS: Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1ß in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. CONCLUSIONS: Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes.


Subject(s)
Carboxylic Acids/chemical synthesis , Carboxylic Acids/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Titanium/chemistry , Titanium/toxicity , Animals , Carrier Proteins/metabolism , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , Surface Properties , Time Factors
15.
Int J Mol Sci ; 15(4): 6815-30, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24758926

ABSTRACT

Silver (Ag) nanomaterials are increasingly used in a variety of commercial applications. This study examined the effect of size (20 and 110 nm) and surface stabilization (citrate and PVP coatings) on toxicity, particle uptake and NLRP3 inflammasome activation in a variety of macrophage and epithelial cell lines. The results indicated that smaller Ag (20 nm), regardless of coating, were more toxic in both cell types and most active in the THP-1 macrophages. TEM imaging demonstrated that 20 nm Ag nanospheres dissolved more rapidly than 110 nm Ag nanospheres in acidic phagolysosomes consistent with Ag ion mediated toxicity. In addition, there were some significant differences in epithelial cell line in vitro exposure models. The order of the epithelial cell lines' sensitivity to Ag was LA4 > MLE12 > C10. The macrophage sensitivity to Ag toxicity was C57BL/6 AM > MARCO null AM, which indicated that the MARCO receptor was involved in uptake of the negatively charged Ag particles. These results support the idea that Ag nanosphere toxicity and NLRP3 inflammasome activation are determined by the rate of surface dissolution, which is based on relative surface area. This study highlights the importance of utilizing multiple models for in vitro studies to evaluate nanomaterials.


Subject(s)
Macrophages/drug effects , Metal Nanoparticles/toxicity , Silver/chemistry , Animals , Carrier Proteins/metabolism , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Metal Nanoparticles/chemistry , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Particle Size
16.
Part Fibre Toxicol ; 10(1): 57, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24225053

ABSTRACT

BACKGROUND: Several properties of multi-walled carbon nanotubes (MWCNT) have the potential to affect their bioactivity. This study examined the in vitro and in vivo outcomes of the influence of diameter, length, purification and carboxylation (in vitro testing only) of MWCNT. METHODS: Three original 'as received' MWCNT that varied in size (diameter and length) were purified and functionalized by carboxylation. The resulting MWCNT were characterized and examined for cytotoxicity and inflammasome activation in vitro using THP-1 cells and primary alveolar macrophages from C57BL/6 mice. Oropharyngeal aspiration administration was used to deliver original MWCNT and in vivo bioactivity and lung retention was examined at 1 and 7 days. RESULTS: Studies with THP-1 macrophages demonstrated that increased length or diameter corresponded with increased bioactivity as measured by inflammasome activation. Purification had little effect on the original MWCNT, and functionalization completely eliminated bioactivity. Similar results were obtained using alveolar macrophages isolated from C57BL/6 mice. The in vivo studies demonstrated that all three original MWCNT caused similar neutrophil influx at one day, but increasing length or diameter resulted in the lavaged cells to release more inflammatory cytokines (IL-6, TNF-α, and IL-1ß) ex vivo. Seven-day histology revealed that, consistent with the in vitro results, increasing width or length of MWCNT caused more severe pathology with the longest MWCNT causing the most severe inflammation. In addition, the same two larger MWCNT were retained more in the lung at 7 days. CONCLUSIONS: Taken together, the results indicated that in vitro and in vivo bioactivity of MWCNT increased with diameter and length. Purification had no significant modifying effect from the original MWCNT. Functionalization by carboxylation completely eliminated the bioactive potential of the MWCNT regardless of size in in vitro testing.


Subject(s)
Inflammation/metabolism , Lung/pathology , Nanotubes, Carbon , Animals , Bronchoalveolar Lavage Fluid , Carrier Proteins/metabolism , Cell Line , Cytokines/metabolism , Humans , In Vitro Techniques , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Molecular Weight , NLR Family, Pyrin Domain-Containing 3 Protein
17.
Inhal Toxicol ; 25(4): 199-210, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23480196

ABSTRACT

This study examined the consequences of surface carboxylation of multiwalled carbon nanotubes (MWCNT) on bioactivity. Since commercial raw MWCNT contain impurities that may affect their bioactivity, HCl refluxing was exploited to purify raw "as-received" MWCNT by removing the amorphous carbon layer on the MWCNT surface and reducing the metal impurities (e.g. Ni). The removal of amorphous carbon layer was confirmed by Raman spectroscopy and thermogravimetric analysis. Furthermore, the HCl-purified MWCNT provided more available reaction sites, leading to enhanced sidewall functionalization. The sidewall of HCl-purified MWCNT was further functionalized with the -COOH moiety by HNO(3) oxidation. This process resulted in four distinct MWCNT: raw, purified, -COOH-terminated raw MWCNT, and -COOH-terminated purified MWCNT. Freshly isolated alveolar macrophages from C57Bl/6 mice were exposed to these nanomaterials to determine the effects of the surface chemistry on the bioactivity in terms of cell viability and inflammasome activation. Inflammasome activation was confirmed using inhibitors of cathepsin B and Caspase-1. Purification reduced the cell toxicity and inflammasome activation slightly compared to raw MWCNT. In contrast, functionalization of MWCNT with the -COOH group dramatically reduced the cytotoxicity and inflammasome activation. Similar results were seen using THP-1 cells supporting their potential use for high-throughput screening. This study demonstrated that the toxicity and bioactivity of MWCNT were diminished by removal of the Ni contamination and/or addition of -COOH groups to the sidewalls.


Subject(s)
Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Animals , Carrier Proteins/metabolism , Caspase 1/metabolism , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cell Line , Cells, Cultured , Humans , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Nanotubes, Carbon/chemistry
18.
Inhal Toxicol ; 24(14): 995-1008, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23216160

ABSTRACT

Multi-walled carbon nanotubes (MWCNT) have been reported to cause lung pathologies in multiple studies. However, the mechanism responsible for the bioactivity has not been determined. This study used nine different well-characterized MWCNT and examined the outcomes in vitro and in vivo. MWCNT, from a variety of sources that differed primarily in overall purity and metal contaminants, were examined for their effects in vitro (toxicity and NLRP3 inflammasome activation using primary alveolar macrophages isolated from C57Bl/6 mice). In addition, in vivo exposures were conducted to determine the inflammatory and pathogenic potency. The particles produced a differential magnitude of responses, both in vivo and in vitro, that was associated most strongly with nickel contamination on the particle. Furthermore, the mechanism of action for the Ni-contaminated particles was in their ability to disrupt macrophage phagolysosomes, which resulted in NLRP3 activation and subsequent cytokine release associated with prolonged inflammation and lung pathology.


Subject(s)
Carrier Proteins/metabolism , Cytokines/metabolism , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Lung/drug effects , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Nickel/toxicity , Pneumonia/chemically induced , Animals , Caspase 1/metabolism , Caspase Inhibitors/pharmacology , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cells, Cultured , Inhalation Exposure , Lung/immunology , Lung/pathology , Lysosomes/metabolism , Macrophages, Alveolar/immunology , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Nanotubes, Carbon/analysis , Nickel/analysis , Pneumonia/immunology , Pneumonia/pathology , Time Factors
19.
Micron ; 153: 103193, 2022 02.
Article in English | MEDLINE | ID: mdl-34929618

ABSTRACT

Biomaterials have a great potential to improve human health, however in vitro and in vivo studies are necessary to provide information on their efficacy and safety. This study reports on a comprehensive evaluation of core-shell electrospun fibers loaded with silver nanoparticles (Ag NP) where the delivery rate was controlled by different sizes of Ag NP and thermoresponsive poly(n-isopropylacrylamide) (PNIPAM) hydrogel particles. Fiber meshes also contain zinc oxide nanoparticles (ZnO NP), to improve pore structure for controlled release of Ag NP. In vitro cytotoxicity studies using cultured human A549 epithelial cells demonstrated that the ZnO NP component, which is known to cause cytotoxicity, of the fiber meshes did cause measurable cell death. In vitro antibacterial efficacy of the fiber meshes was shown with rapid and efficient growth inhibition in E. coli bacterial culture. Fiber meshes were implanted subcutaneously for up to 27 days in male and female C57BL/6 mice to evaluate the in vivo drug release and biocompatibility. Hyperspectral microscopy was used as an advanced tool to determine precise location of released Ag NP into the skin compared to the conventional tissue staining methods. Results suggested that Ag NP were continuously released over 27 days of implantation in mice. Hyperspectral imaging revealed that released Ag NP dispersed in the dermis of male mice, however, Ag NP accumulated in the hair follicles of female mice (Figure). Mice implanted with fiber meshes containing ZnO NP had better hair regrowth and wound healing, which was in contrast to in vitro cytotoxicity results. These findings suggest that these newly developed fiber meshes can have unique long-term release of drugs loaded in the fiber core and appear to be biocompatible. The differences in the sex-bias outcome suggest the opportunity for development of sex-specific drug delivery systems.


Subject(s)
Metal Nanoparticles , Nanoparticles , Pharmaceutical Preparations , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Female , Male , Metal Nanoparticles/toxicity , Mice , Mice, Inbred C57BL , Microscopy , Sex Characteristics , Silver/pharmacology
20.
Inflammation ; 45(2): 677-694, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34655011

ABSTRACT

Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA's anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.


Subject(s)
Docosahexaenoic Acids , Pneumonia , Animals , Diet , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Pneumonia/chemically induced , Pneumonia/drug therapy , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL