Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Small ; 19(22): e2300758, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36866497

ABSTRACT

Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2  = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.

2.
Phys Chem Chem Phys ; 25(40): 27885-27890, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37815353

ABSTRACT

The potential application of zinc air batteries to tackle the energy shortage and environmental crisis has proposed new requirements of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Utilizing the special spatial structure of zeolitic imidazolate framework-67 (ZIF-67) as an ideal research platform, the effect of a trace amount of Fe on the composition and structure of as-obtained Fe-CoNC catalysts was investigated. It was revealed that, due to the increased exposed pore structure and metal species located at the near surface, the active sites for the ORR/OER on Fe-CoNC are highly exposed, greatly boosting the activity to the reduction and evolution of oxygen in alkaline media. ZABs with Fe-CoNC have the highest maximum power density of 200 mW cm-2 when operated at current densities as high as 328 mA cm-2, better than not only Fe-free CoNC, but also precious metal-based references with the same catalyst loading.

3.
Small ; 14(15): e1704282, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29504246

ABSTRACT

The oxygen reduction reaction (ORR) plays an important role in the fields of energy storage and conversion technologies, including metal-air batteries and fuel cells. The development of nonprecious metal electrocatalysts with both high ORR activity and durability to replace the currently used costly Pt-based catalyst is critical and still a major challenge. Herein, a facile and scalable method is reported to prepare ZIF-8 with single ferrocene molecules trapped within its cavities (Fc@ZIF-8), which is utilized as precursor to porous single-atom Fe embedded nitrogen-doped carbon (Fe-N-C) during high temperature pyrolysis. The catalyst shows a half-wave potential (E1/2 ) of 0.904 V, 67 mV higher than commercial Pt/C catalyst (0.837 V), which is among the best compared with reported results for ORR. Significant electrochemical properties are attributed to the special configuration of Fc@ZIF-8 transforming into a highly dispersed iron-nitrogen coordination moieties embedded carbon matrix.

4.
Nanomicro Lett ; 16(1): 55, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108921

ABSTRACT

High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF3-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d-band center and d orbital occupancy of active centers, which optimizes the d-p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO2 and thus reinforcing the reaction kinetics. As a result, the Li-O2 battery with KCoMnNiMgZnF3-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.

5.
Nat Commun ; 14(1): 4766, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553335

ABSTRACT

The two-electron oxygen reduction reaction in acid is highly attractive to produce H2O2, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient H2O2 production in acid. The H2O2 partial current density reaches 1.92 mA cm-2 at 0.65 V in the rotating ring-disk electrode test, while the H2O2 production rate is as high as 9.68 mol g-1 h-1 in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for H2O2 production and other catalytic systems.

6.
Chem Commun (Camb) ; 59(94): 13982-13985, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37937427

ABSTRACT

Lithium oxalate (Li2C2O4) is an attractive cathode pre-lithiation additive for lithium-ion batteries (LIBs), but its application is hindered by its high decomposition potential (>4.7 V). Due to the liquid-solid synergistic effect of the NaNO2 additive and the LiNi0.83Co0.07Mn0.1O2 (NCM) cathode material, the decomposition efficiency of micro-Li2C2O4 reaches 100% at a low charge cutoff voltage of 4.3 V. Our work boosts the widespread practical application of Li2C2O4 by a simple and promising electrolyte-assisted cathode pre-lithiation strategy.

7.
Patterns (N Y) ; 4(6): 100732, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37409054

ABSTRACT

Accurate early detection of internal short circuits (ISCs) is indispensable for safe and reliable application of lithium-ion batteries (LiBs). However, the major challenge is finding a reliable standard to judge whether the battery suffers from ISCs. In this work, a deep learning approach with multi-head attention and a multi-scale hierarchical learning mechanism based on encoder-decoder architecture is developed to accurately forecast voltage and power series. By using the predicted voltage without ISCs as the standard and detecting the consistency of the collected and predicted voltage series, we develop a method to detect ISCs quickly and accurately. In this way, we achieve an average percentage accuracy of 86% on the dataset, including different batteries and the equivalent ISC resistance from 1,000 Ω to 10 Ω, indicating successful application of the ISC detection method.

8.
Adv Sci (Weinh) ; 9(4): e2103964, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34821481

ABSTRACT

Soluble redox mediators (RMs), an alternative to conventional solid catalysts, have been considered an effective countermeasure to ameliorate sluggish kinetics in the cathode of a lithium-oxygen battery recently. Nevertheless, the high mobility of RMs leads to serious redox shuttling, which induces an undesired lithium-metal degeneration and RM decomposition during trade-off catalysis against the sustainable operation of batteries. Here, a novel carbon family of graphdiyne matrix is first proposed to decouple the charge-carrying redox property of ferrocene and the shuttle effects. It is demonstrated that a ferrocene-anchored graphdiyne framework can function as stationary RM, not only preserving the redox-mediating capability of ferrocene, but also promoting the local orientated three-dimensional (3D) growth of Li2 O2 . As a result, the RM-assisted catalysis in lithium-oxygen battery remains of remarkable efficiency and stability without the depletion of oxidized RMs or lithium degradation, resulting in a significantly enhanced electrochemical performance.

9.
Nat Commun ; 12(1): 6335, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34732747

ABSTRACT

Single-atom catalysts are becoming increasingly significant to numerous energy conversion reactions. However, their rational design and construction remain quite challenging due to the poorly understood structure-function relationship. Here we demonstrate the dynamic behavior of CuN2C2 site during operando oxygen reduction reaction, revealing a substrate-strain tuned geometry distortion of active sites and its correlation with the activity. Our best CuN2C2 site, on carbon nanotube with 8 nm diameter, delivers a sixfold activity promotion relative to graphene. Density functional theory and X-ray absorption spectroscopy reveal that reasonable substrate strain allows the optimized distortion, where Cu bonds strongly with the oxygen species while maintaining intimate coordination with C/N atoms. The optimized distortion facilitates the electron transfer from Cu to the adsorbed O, greatly boosting the oxygen reduction activity. This work uncovers the structure-function relationship of single-atom catalysts in terms of carbon substrate, and provides guidance to their future design and activity promotion.

10.
ACS Appl Mater Interfaces ; 12(22): 24717-24725, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32369337

ABSTRACT

Perovskite oxides as bifunctional electrocatalysts toward oxygen reduction (ORR) and oxygen evolution reactions (OER) have been investigated for decades because of the flexible and adjustable electronic structures. For example, by optimizing the strength of the Co-O bond, the ORR and OER activity of a typical perovskite oxide, LaCoO3, can be improved, but they are still unsatisfying. The insufficient insights into the effects of secondary metal dopants at the B-site on the electronic structure and activity, especially for ORR, significantly limit the R&D of bifunctional perovskite oxide catalysts. In this work, a series of LaMnxCo1-xO3 (x = 0, 0.25, 0.3, 0.35, 0.5, 1) catalysts are prepared by a polyol-assisted solvothermal method to investigate the structure-property relationships between the B-site metal substitution and the electrochemical performance of perovskite oxides catalysts. The optimized LaMn0.3Co0.7O3 catalyst demonstrates an enhanced half-wave potential of 0.72 V for ORR, 52 mV higher than that of the pristine LaCoO3 (0.668 V). Meanwhile, the OER overpotential of LaMn0.3Co0.7O3 catalyst is 416 mV, which is reduced by 64 mV compared to LaCoO3 (480 mV). It is revealed that the appropriate Mn dopant efficiently optimizes the covalency of Co-O bonds and significantly reduces the eg orbit-filling electron from 1.23 of pristine LaCoO3 to 1.02 in LaMn0.3Co0.7O3 (very close to theoretical value 1). This work paves a new way to design and synthesize bifunctional perovskite oxide electrocatalyst for ORR and OER.

11.
ACS Appl Mater Interfaces ; 12(9): 10452-10460, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32043859

ABSTRACT

Rechargeable lithium-oxygen batteries have shown great potential as next-generation sustainable and green energy storage systems. The bifunctional catalyst plays an important role in accelerating the cathode kinetics for practical realization of the batteries. Herein, we employ the surface structure and defect engineering to introduce surface-roughened nanolayers and oxygen vacancies on the mesoporous hollow LaCoxMn1-xO3-σ perovskite catalyst by in situ cation substitution. The experimental results show that the O2-electrode with the LaCo0.75Mn0.25O3-σ catalyst exhibits an extremely high discharge capacity of 10,301 mA h g-1 at 200 mA g-1 for the initial cycle and superior cycling stability under a capacity limit of 500 mA h g-1 together with a low voltage gap of 1.12 V. Good electrochemical performance of LaCo0.75Mn0.25O3-σ can be attributed to the synergistic effect of the hierarchical mesoporous hollow structure and the abundant oxygen vacancies all over the catalyst surface. We reveal that the modified surface structure can provide more accessibility of active sites to promote electrochemical reactions, and the introduced oxygen vacancy can serve as an efficient substrate for binding intermediate products and decomposition reactions of Li2O2 during discharge and charge processes. Our methodology provides meaningful insights into the rational design of highly active perovskite catalysts in energy storage/conversion systems.

SELECTION OF CITATIONS
SEARCH DETAIL