Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Angew Chem Int Ed Engl ; 59(31): 13037-13043, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32347593

ABSTRACT

We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp'2 Dy(µ-X)]2 (Cp'=cyclopentadienyltrimethylsilane anion; 1: X=CH3 - ; 2: X=Cl- ; 3: X=Br- ; 4: X=I- ). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.

2.
Chemistry ; 23(24): 5708-5715, 2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28135029

ABSTRACT

The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2 PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2 PO)2 (H2 O)5 ]Br3 ⋅2 (CyPh2 PO)⋅EtOH⋅3 H2 O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets.

3.
Opt Express ; 24(5): 5387-5394, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092362

ABSTRACT

Plasmonic nanostructures with sub-10 nm gaps possess intense electric field enhancements, leading to their high reputation for exploring various functional applications at nanoscale. Till now, although large amounts of efforts have been devoted into investigation of such structures, few works were emphased on the nonlinear optical properties in near-ultraviolet (UV) region. Here, by combining sputtering technique and an optimized anodic aluminum oxide (AAO) template growing method, we obtain aluminum (Al) nanorod array film (NRAF) with average rod diameter and gap size of 50 and 7 nm, respectively. The Al-NRAF exhibits large third-order optical nonlinear susceptibility (χ(3)) and high figure of merit (χ(3)/α) over a broad wavelength range from 360 to 900 nm, and reaches their maximums at the shortest measured wavelength. In addition, comparisons with Au-NRAF and Ag-NRAF samples further confirm that Al-NRAF has better nonlinear optical properties in the blue and near-UV wavelength regions. These results indicate that Al nanostructures are promising candidates for nonlinear plasmonic applications at blue and near-UV wavelengths.

4.
Article in English | MEDLINE | ID: mdl-39480744

ABSTRACT

Two-dimensional (2D) van der Waals (vdW) magnetic materials with atomic-scale thickness and smooth interfaces promise the possibility of developing high-density, energy-efficient spintronic devices. However, it remains a challenge to effectively control the perpendicular magnetic anisotropy (PMA) of 2D vdW ferromagnetic materials, as well as the integration of multiple memory cells. Here, we report highly efficient magneto-optical memory arrays by utilizing the huge spin-orbit torques (SOT) induced by the in-plane current in Fe3GeTe2 (FGT) flake. The device is constructed from individual FGT flakes without heavy metal assistance and allows for a low current density. The magneto-optical memory arrays implement nonvolatile memories for three bits and can be repeatedly scrubbed for "writing" and "reading". Besides, we show that FGT nanoflakes possess current-controlled volatile switching behavior at zero magnetic field. These results provide a solution for the next generation of all-vdW-scalable, high-performance spintronic logic devices and SOT-Magnetic Random Access Memory (MRAM).

5.
Opt Express ; 21(15): 17568-75, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938629

ABSTRACT

Au triangular nanoprisms with strong dipole plasmon absorption peak at 1240 nm were prepared by wet chemical methods. Both numerical calculations and experiments were carried out to investigate the optical properties of the samples. Finite difference time domain (FDTD) and Local Density of States (LDOS) calculations demonstrate that strong electric field enhancement and large LDOS can be obtained at tip areas of the Au triangular nanoprisms. Z scan techniques were used to characterize the nonlinear absorption, nonlinear refraction, as well as one- and two-photon figures of merit (W and T, respectively) of the sample. The results show that maximum nonlinear refractive index can be obtained around the resonance absorption wavelength of 1240 nm, detuning the wavelength from the absorption peak will lead to the decrease of the nonlinear refractive index n(2), while the nonlinear absorption coefficient ß doesn't change much with the wavelength. This large wavelength dependence of n(2) and small change of ß enable the sample to satisfy the all-optical switching demand of W> 1 and T< 1 easily in a large wavelength range of 1200-1300 nm. These significant nonlinear properties of the sample imply that Au triangular nanoprism is a good candidate for future optical switches in infrared optical communication wavelength region.


Subject(s)
Gold/chemistry , Models, Theoretical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanotechnology/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Infrared Rays , Light , Nonlinear Dynamics , Scattering, Radiation
6.
Opt Lett ; 38(19): 3754-7, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081044

ABSTRACT

An optical technique is proposed for the accurate calibration of pulsed high magnetic fields utilizing the magnetic field dependent photoluminescence (PL) properties in an Er(3+):YVO(4) single crystal at 80 K. Bright green PL emissions are excited by a 487.5 nm laser line and can be enhanced greatly by a magnetic field at certain field values (B(c)). Since the B(c)'s under 10 T are extremely stable for a given sample at a certain temperature, and the FWHM of the enhancement peaks are less than 0.9 T, an Er(3+):YVO(4) single crystal is proven to be a good candidate for pulsed high magnetic field calibration. The detailed processes and numerous advantages of the technique are presented in this work.

7.
Adv Sci (Weinh) ; 10(22): e2207617, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327250

ABSTRACT

2D ferromagnet is a good platform to investigate topological effects and spintronic devices owing to its rich spin structures and excellent external-field tunability. The appearance of the topological Hall Effect (THE) is often regarded as an important sign of the generation of chiral spin textures, like magnetic vortexes or skyrmions. Here, interface engineering and an in-plane current are used to modulate the magnetic properties of the nearly room-temperature 2D ferromagnet Fe5 GeTe2 . An artificial topology phenomenon is observed in the Fe5 GeTe2 /MnPS3 heterostructure by using both anomalous Hall Effect and reflective magnetic circular dichroism (RMCD) measurements. Through tuning the applied current and the RMCD laser wavelength, the amplitude of the humps and dips observed in the hysteresis loops can be modulated accordingly. Magnetic field-dependent hysteresis loops demonstrate that the observed artificial topological phenomena are induced by the generation and annihilation of the magnetic domains. This work provides an optical method for investigating the topological-like effects in magnetic structures and proposes an effective way to modulate the magnetic properties of magnetic materials, which is important for developing magnetic and spintronic devices in van der Waals magnetic materials.

8.
J Nanosci Nanotechnol ; 11(6): 5024-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21770138

ABSTRACT

ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.

9.
ACS Appl Mater Interfaces ; 13(20): 24314-24320, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33977712

ABSTRACT

Fe3GeTe2/MnPS3 and Fe3GeTe2/MnPSe3 van der Waals heterostructures were fabricated by mechanical exfoliation. Via the magneto-optical Kerr effect and reflected magnetic circular dichroism measurements, we have observed nearly three times enhancement of the coercive field, improvement of Curie temperature, and exchange bias effect in both heterostructures. These observations may provide new insights into the emergent heterostructure devices between itinerant ferromagnets and metal thio- and selenophosphates for both applied and fundamental research studies in magnetic correlations.

10.
Opt Lett ; 35(14): 2334-6, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20634821

ABSTRACT

We demonstrate Type II difference-frequency generation (DFG) around 1550 nm in AlGaAs Bragg reflection waveguides using a pump around 778 nm and a signal within the C-band range. Difference-frequency power of 0.95 nW was obtained using a pump power of 62.9 mW and a signal power of 2.9 mW. Nonlinear conversion efficiency was estimated to be 2.5 x 10(-2)%/W(-1) cm(-2) in a 1.5-mm-long sample. Using numerical simulations, the phase-matching bandwidth was predicted to be 100 nm, while the measured DFG showed no sign of bandwidth limitation across a wavelength span of 40 nm, which was limited by instrumentation.

11.
ACS Appl Mater Interfaces ; 11(35): 32469-32474, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31409071

ABSTRACT

The third-order optical nonlinearities and the hot electron relaxation time (τ) of random-distributed gold nanorods arrays on glass (R-GNRA) have been investigated by using Z-scan and optical Kerr effect (OKE) techniques. Large third-order optical susceptibility (χ(3)) with the value of 2.5 × 10-6 esu has been obtained around the plamsonic resonance peak under the excitation power intensity of 0.1 GW/cm2. Further decrease of the excitation power intensity down to 0.3 MW/cm2 will lead to the significant increase of χ(3) up to 6.4 × 10-4 esu. The OKE results show that the relaxation time of R-GNRA around the plasmonic peak is 13.9 ± 0.4 ps, which is more than 4 times longer than those of the individual gold nanostructures distributed in water solutions. The Finite-difference time domain simulations demonstrate that this large enhancement of χ(3) and slow down of τ are caused by the gap-induced large local field enhancement of GNRs dimers in R-GNRA. These significant results offer great opportunities for plasmonic nanostructures in applications of photonic and photocatalytic devices.

12.
Nanoscale ; 10(26): 12695-12703, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29946608

ABSTRACT

A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

13.
Sci Rep ; 6: 18857, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26728439

ABSTRACT

Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices.

14.
Chem Sci ; 7(8): 5020-5031, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155153

ABSTRACT

A series of compounds [ADyL4]·[solvent] composed of a dysprosium(iii) ion coordinated by four chelated naphthyridine-like ligands (L = 4-hydroxy-8-methyl-1,5-naphthyridine-3-carbonitrile) and an alkali metal ion (A = Na, K, Rb, Cs) were synthesized and characterized. They behave as single-molecule magnets under a zero dc field with an effective energy barrier of around 95 cm-1. Meanwhile, the main part, [ADyL4], of these SMMs is thermostable and sublimable. The geometric structures of three sublimed compounds are identical to the original ones without solvents, which is confirmed by X-ray diffraction using single crystal and powder samples. The static and dynamic magnetic properties remain unchanged before and after sublimation. Luminescence measurements at 5-77 K were performed to verify the energy gap between low-lying states and to understand the pathway of the thermal relaxation process of magnetization, as well as to inspect the tiny variation in magnetic sublevels for the ground term of Dy(iii). The photoluminescence spectra under a magnetic field (0-36 T) for the Dy-SMMs are investigated for the first time. The energy splitting of the two lowest sublevels of the ground term 6H15/2 of Dy(iii) are analyzed using the Zeeman formula.

15.
Nanoscale ; 7(47): 20171-9, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26607673

ABSTRACT

Spectral-based methods are often used for label-free biosensing. However, practical implementations with plasmonic nanostructures suffer from a broad line width caused by strong radiative and nonradiative losses, and the sensing performance characterized by figure of merit is poor for these spectral-based methods. This study provides a polarization state-based method using plasmonic nanostructures to improve the sensing performance. Instead of the intensity spectrum, the polarization state of the transmitted field is monitored to analyze variations of the surrounding medium. The polarization state of incidence is strongly modified due to the excitation of surface plasmons, and the ellipticity of the transmitted field changes dramatically around plasmon resonances. Sharp resonances with line widths down to sub-nanometer are achieved by plotting the spectra of the reciprocal of ellipticity. Therefore, the sensing performance can be significantly improved, and a theoretical value of the figure of merit exceeding 1700 is achieved by using the polarization state-based sensing approach.


Subject(s)
Biosensing Techniques , Nanostructures/chemistry , Nanotechnology/methods , Refractometry/methods , Surface Plasmon Resonance/methods , Dimerization , Gold/chemistry , Interferometry/methods , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Nanotubes/chemistry
16.
Nanoscale ; 7(37): 15392-403, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26335388

ABSTRACT

Strongly coupled plasmonic nanostructures with sub-10 nm gaps can enable intense electric field enhancements which greatly benefit the various light-matter interactions. From the point view of practical applications, such nanostructures should be of low-cost, facile fabrication and processing, large-scale with high-yield of the ultrasmall gaps, and easy for integration with other functional components. However, nowadays techniques for reliable fabrication of these nanostructures usually involve complex, time-consuming, and expensive lithography procedures, which are limited either by their low-throughput or the small areas obtained. On the other hand, so far most of the studies on the sub-10 nm gap nanostructures mainly focused on the surface-enhanced Raman scattering and high-harmonic generations, while leaving other nonlinear optical properties unexplored. In this work, using a scalable process without any lithography procedures, we demonstrated a centimeter-scale ordered plasmonic nanorod array film (PNRAF) with well-defined sub-10 nm interparticle gaps as a versatile platform for strongly enhanced light-matter interactions. Specifically, we showed that due to its plasmon-induced localized electromagnetic field enhancements, the Au PNRAF could exhibit extraordinary intrinsic multi-photon avalanche luminescence (MAPL) and nonlinear saturable absorption (SA). Furthermore, the PNRAF can be easily integrated with semiconductor quantum dots (SQDs) as well as wide bandgap semiconductors to strongly enhance their fluorescence and photocurrent response, respectively. Our method can be easily generalized to nanorod array films consisting of other plasmonic metals and even semiconductor materials, which can have multiple functionalities derived from different materials. Overall, the findings in our study have offered a potential strategy for design and fabrication of nanostructures with ultrasmall gaps for future photonic and optoelectronic applications.

17.
J Fluoresc ; 17(6): 715-20, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17690953

ABSTRACT

To investigate the influence of surface trapping and dark states on CdSe and CdSe/ZnS quantum dots (QDs), we studied the absorption, fluorescence intensity and lifetime by using one-and two-photon excitation, respectively. Experimental results show that both one- and two-photon fluorescence emission efficiencies of the QDs enhance greatly and the lifetime increase after capping CdSe with ZnS due to the effective surface passivation. The lifetime of one-photon fluorescence of CdSe and CdSe/ZnS QDs increase with increasing emission wavelength in a supralinear way, which is attributed to the energy transfer of dark excitons. On the contrary, the lifetime of two-photon fluorescence of bare and core-shell QDs decrease with increasing emission wavelength, and this indicates that the surface trapping is the dominant decay mechanism in this case.

18.
Nano Lett ; 7(3): 723-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17311463

ABSTRACT

We demonstrate highly efficient avalanche multiphoton luminescence (MPL) from ordered-arrayed gold nanowires (NWs) with low time-average excitation intensity, Iexc (5.0-9.1 kW/cm2). The intensity of avalanche MPL, IMPL, is about 10(4) times larger than that of three-photon luminescence, the slope partial differential log IMPL/ partial differential log Iexc of avalanche MPL reaches as high as 18.3, and the corresponding polarization dependence of IMPL has a form of cos50 phip. The emission dynamics of avalanche MPL and three-photon luminescence are also studied comparatively. These observations indicate that the highly efficient avalanche MPL is attributed to the giant enhancement and coupling of longitudinal surface plasmon resonance of ordered-arrayed gold NWs.

SELECTION OF CITATIONS
SEARCH DETAIL