Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Mol Microbiol ; 105(6): 825-838, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28657694

ABSTRACT

Filamentous fungi are able to differentiate morphologically and adapt the metabolism to internal and external cues. One major regulator is the so-called velvet protein, VeA, best studied in Aspergillus nidulans. The protein interacts with several other proteins to regulate light sensing, the balance between asexual and sexual development, penicillin biosynthesis or mycotoxin production. Here, we characterized a novel VeA-interacting protein, VipA. The 334 amino acid long protein comprises a FAR1-like DNA-binding domain, known from plant transcription factors like FHY3 (Far-red elongated hypocotyl 3). VipA interacted not only with VeA, but also with the WC orthologue LreA in the nuclei and with the phytochrome FphA in the cytoplasm. Conidia and cleistothecia formation was similarly affected in a vipA-deletion strain as in an fphA mutant. However, the effect was less pronounced, suggesting a modulating and not an essential role in light sensing. In addition, VipA modulated heme biosynthesis in response to light through association with the hemB promoter, the gene encoding 5-aminolevulinic acid dehydratase. After illumination of A. nidulans mycelia with white light the intracellular heme concentration increased by 30% in comparison to a vipA-deletion mutant. Hence, VipA couples heme biosynthesis to the illumination conditions.


Subject(s)
Aspergillus nidulans/genetics , Heme/biosynthesis , Aspergillus nidulans/metabolism , Cell Nucleus/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Heme/metabolism , Light , Mycotoxins/metabolism , Phytochrome/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism
2.
Fungal Genet Biol ; 104: 1-5, 2017 07.
Article in English | MEDLINE | ID: mdl-28427933

ABSTRACT

Purification of high quality genomic DNA (gDNA) from filamentous fungi suitable for whole genome sequencing has previously involved many steps. Here, we report a simple and easy-to-follow mini-preparation protocol for high molecular weight (∼20kb) gDNA from filamentous fungi including Aspergillus and Eurotium. This comprehensive protocol includes graphic step-by-step instructions for inoculation, homogenization, and purification of gDNA. The most critical step is a thorough 3-5min homogenization of the freeze-dried mycelium using a motorized hand-held homogenizer with a mini spatula inserted. Approximately 20mg of the fine mycelial powder is then subjected to a modified procedure for the DNeasy Plant Mini Kit (Qiagen). This Qiagen spin column protocol avoids precipitation, dryness, and resuspension of gDNA, which can cause shearing and loss of gDNA. Final gDNA yields from ∼20mg of fine mycelial powder are 8 to 20µg with a consistent 260/280nm absorbance ratio of ∼1.9. All 30 gDNA samples we purified using our method were of high molecular weight (∼20kb). Whole genome sequencing of these DNA samples resulted in 160-260 X coverage with 2×150 reads using NextSeq 500. These gDNAs are also of a suitable quality for Southern blotting and PCR-based amplification of various genes in filamentous fungi.


Subject(s)
DNA, Fungal/isolation & purification , Fungi/genetics , Aspergillus/genetics , Blotting, Southern , DNA, Fungal/chemistry , Eurotium/genetics , Genetic Techniques , Molecular Weight
3.
Adv Appl Microbiol ; 100: 161-202, 2017.
Article in English | MEDLINE | ID: mdl-28732553

ABSTRACT

The filamentous fungal genus Aspergillus consists of over 340 officially recognized species. A handful of these Aspergillus fungi are predominantly used for food fermentation and large-scale production of enzymes, organic acids, and bioactive compounds. These industrially important Aspergilli primarily belong to the two major Aspergillus sections, Nigri and Flavi. Aspergillus oryzae (section Flavi) is the most commonly used mold for the fermentation of soybeans, rice, grains, and potatoes. Aspergillus niger (section Nigri) is used in the industrial production of various enzymes and organic acids, including 99% (1.4 million tons per year) of citric acid produced worldwide. Better understanding of the genomes and the signaling mechanisms of key Aspergillus species can help identify novel approaches to enhance these commercially significant strains. This review summarizes the diversity, current applications, key products, and synthetic biology of Aspergillus fungi commonly used in industry.


Subject(s)
Aspergillus/genetics , Biodiversity , Industrial Microbiology , Synthetic Biology , Aspergillus/classification , Aspergillus/enzymology , Aspergillus/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Phylogeny
4.
BMC Genomics ; 16: 478, 2015 Jun 27.
Article in English | MEDLINE | ID: mdl-26115917

ABSTRACT

BACKGROUND: The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS: Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION: Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.


Subject(s)
Aspergillus nidulans/genetics , Oxidative Stress/genetics , Stress, Physiological/genetics , Down-Regulation/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Genotype , Oxidation-Reduction , RNA, Messenger/genetics , Secondary Metabolism/genetics , Spores, Fungal/genetics , Transcription Factors/genetics
5.
Sci Rep ; 14(1): 12226, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806600

ABSTRACT

The human microbiome contains genetic information that regulates metabolic processes in response to host health and disease. While acidic vaginal pH is maintained in normal conditions, the pH level increases in infectious vaginitis. We propose that this change in the vaginal environment triggers the biosynthesis of anti-vaginitis metabolites. Gene expression levels of Chryseobacterium gleum, a vaginal symbiotic bacterium, were found to be affected by pH changes. The distinctive difference in the metabolic profiles between two C. gleum cultures incubated under acidic and neutral pH conditions was suggested to be an anti-vaginitis molecule, which was identified as phenylacetic acid (PAA) by spectroscopic data analysis. The antimicrobial activity of PAA was evaluated in vitro, showing greater toxicity toward Gardnerella vaginalis and Candida albicans, two major vaginal pathogens, relative to commensal Lactobacillus spp. The activation of myeloperoxidase, prostaglandin E2, and nuclear factor-κB, and the expression of cyclooxygenase-2 were reduced by an intravaginal administration of PAA in the vaginitis mouse model. In addition, PAA displayed the downregulation of mast cell activation. Therefore, PAA was suggested to be a messenger molecule that mediates interactions between the human microbiome and vaginal health.


Subject(s)
Chryseobacterium , Phenylacetates , Vagina , Female , Animals , Phenylacetates/metabolism , Phenylacetates/pharmacology , Vagina/microbiology , Mice , Humans , Chryseobacterium/metabolism , Candida albicans/metabolism , Candida albicans/drug effects , Symbiosis , Hydrogen-Ion Concentration , Gardnerella vaginalis/metabolism , Gardnerella vaginalis/drug effects , Disease Models, Animal , Vaginitis/microbiology , Vaginitis/metabolism , Vaginitis/drug therapy
6.
PLoS Genet ; 6(12): e1001226, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21152013

ABSTRACT

VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet) complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells), which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.


Subject(s)
Aspergillus nidulans/growth & development , Aspergillus nidulans/radiation effects , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Multigene Family , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/radiation effects , Light , Protein Binding
7.
J Microbiol Biotechnol ; 33(11): 1420-1427, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37528554

ABSTRACT

The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.


Subject(s)
Aspergillus nidulans , Fungal Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phenotype , Spores, Fungal/genetics , RNA, Messenger
8.
Mycobiology ; 50(6): 408-419, 2022.
Article in English | MEDLINE | ID: mdl-36721784

ABSTRACT

Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.

9.
Cells ; 12(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36611796

ABSTRACT

In filamentous fungal Aspergillus species, growth, development, and secondary metabolism are genetically programmed biological processes, which require precise coordination of diverse signaling elements, transcription factors (TFs), upstream and downstream regulators, and biosynthetic genes. For the last few decades, regulatory roles of these controllers in asexual/sexual development and primary/secondary metabolism of Aspergillus species have been extensively studied. Among a wide spectrum of regulators, a handful of global regulators govern upstream regulation of development and metabolism by directly and/or indirectly affecting the expression of various genes including TFs. In this review, with the model fungus Aspergillus nidulans as the central figure, we summarize the most well-studied main upstream regulators and their regulatory roles. Specifically, we present key functions of heterotrimeric G proteins and G protein-coupled receptors in signal transduction), the velvet family proteins governing development and metabolism, LaeA as a global regulator of secondary metabolism, and NsdD, a key GATA-type TF, affecting development and secondary metabolism and provide a snapshot of overall upstream regulatory processes underlying growth, development, and metabolism in Aspergillus fungi.


Subject(s)
Aspergillus nidulans , Fungal Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Secondary Metabolism , Aspergillus nidulans/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction
10.
Mol Microbiol ; 75(6): 1372-88, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20149101

ABSTRACT

Carbon dioxide (CO(2)) and its hydration product bicarbonate (HCO(3)(-)) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO(2) and HCO(3)(-) is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn(2+)-metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA-D and canA-B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO(2)-inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO(2)-requiring phenotype of a Saccharomyces cerevisiae Deltance103 mutant. Only the DeltacafA DeltacafB and DeltacanB deletion mutants were unable to grow at 0.033% CO(2), of which growth defects can be restored by high CO(2). Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatus DeltacafA, DeltacafB, DeltacafC, DeltacafD and DeltacafA DeltacafB mutant strains are fully virulent in a low-dose murine infection.


Subject(s)
Aspergillus fumigatus/enzymology , Aspergillus nidulans/enzymology , Carbonic Anhydrases/metabolism , Fungal Proteins/metabolism , Amino Acid Sequence , Animals , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/growth & development , Aspergillus nidulans/genetics , Carbon Dioxide/metabolism , Carbonic Anhydrases/genetics , Cluster Analysis , DNA, Fungal/genetics , Disease Models, Animal , Fungal Proteins/genetics , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Mice , Molecular Sequence Data , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Sequence Homology , Spores, Fungal/growth & development , Survival Analysis , Virulence
11.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: mdl-33563821

ABSTRACT

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination.IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Profiling , Genes, Fungal , Metabolomics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Aspergillus nidulans/growth & development , Gene Deletion , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Proteomics , Reproduction, Asexual/genetics , Spores, Fungal/growth & development , Transcriptome
12.
Genetics ; 182(3): 771-83, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19416940

ABSTRACT

The formation of the Aspergillus nidulans fruiting body is affected by a number of genetic and environmental factors. Here, the nsdC (never in sexual development) gene-encoding a putative transcription factor carrying a novel type of zinc-finger DNA-binding domain consisting of two C(2)H(2)'s and a C(2)HC motif that are highly conserved in most fungi but not in plants or animals-was investigated. Two distinct transcripts of 2.6 and 3.0 kb were generated from nsdC. The 2.6-kb mRNA accumulated differentially in various stages of growth and development, while the level of the 3.0-kb mRNA remained relatively constant throughout the life cycle. While the deletion of nsdC resulted in the complete loss of fruiting body formation under all conditions favoring sexual development, overexpression of nsdC not only enhanced formation of fruiting bodies (cleistothecia) but also overcame inhibitory effects of certain stresses on cleistothecial development, implying that NsdC is a key positive regulator of sexual development. Deletion of nsdC also retarded vegetative growth and hyperactive asexual sporulation, suggesting that NsdC is necessary not only for sexual development but also for regulating asexual sporulation negatively. Overexpression of veA or nsdD does not rescue the failure of fruiting body formation caused by nsdC deletion. Furthermore, nsdC expression is not affected by either VeA or NsdD, and vice versa, indicating that NsdC regulates sexual development independently of VeA or NsdD.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers , Acetates/pharmacology , Amino Acid Sequence , Aspergillus nidulans/drug effects , Aspergillus nidulans/physiology , Blotting, Northern , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Glucose/pharmacology , Glycerol/pharmacology , Introns/genetics , Lactose/pharmacology , Molecular Sequence Data , Mutation , Mycelium/drug effects , Mycelium/genetics , Mycelium/growth & development , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Spores, Fungal/growth & development , Time Factors
13.
Mycobiology ; 48(6): 528-531, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33312021

ABSTRACT

Scopulariopsis brevicaulis is a widely distributed soil fungus known as a common saprotroph of biodegradation. It is also an opportunistic human pathogen that can produce various secondary metabolites. Here, we report the first complete mitochondrial genome sequence of S. brevicaulis isolated from air in South Korea. Total length of the mitochondrial genome is 28,829 bp and encoded 42 genes (15 protein-coding genes, 2 rRNAs, and 25 tRNAs). Nucleotide sequence of coding region takes over 26.2%, and overall GC content is 27.6%. Phylogenetic trees present that S. brevicaulis is clustered with Lomentospora prolificans with presenting various mitochondrial genome length.

14.
J Fungi (Basel) ; 6(4)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207581

ABSTRACT

In eukaryotes, the MAP kinase signaling pathway plays pivotal roles in regulating the expression of genes required for growth, development, and stress response. Here, we deleted the mpkB gene (AFLA_034170), an ortholog of the Saccharomyces cerevisiae FUS3 gene, to characterize its function in Aspergillus flavus, a cosmopolitan, pathogenic, and aflatoxin-producing fungus. Previous studies revealed that MpkB positively regulates sexual and asexual differentiation in Aspergillus nidulans. In A. flavus, mpkB deletion resulted in an approximately 60% reduction in conidia production compared to the wild type without mycelial growth defects. Moreover, the mutant produced immature and abnormal conidiophores exhibiting vesicular dome-immaturity in the conidiophore head, decreased phialide numbers, and very short stalks. Interestingly, the ΔmpkB mutant could not produce sclerotia but produced aflatoxin B1 normally. Taken together, these results suggest that the A. flavus MpkB MAP kinase positively regulates conidiation and sclerotia formation but is not involved in the production of secondary metabolites such as aflatoxin B1.

15.
Mitochondrial DNA B Resour ; 5(3): 3590-3592, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33367022

ABSTRACT

Afla-Guard® is a commercial non-toxigenic Aspergillus flavus strain used to decrease aflatoxin contamination level in field. Its mitochondrial genome was sequenced, showing that its length is 29,208 bp with typical configuration of Aspergillus mitochondrial genome. 17 SNPs and 27 INDELs were identified by comparing with previous A. flavus mitochondrial genome. Phylogenetic trees present that A. flavus of Afla-Guard® was clustered with the previous A. flavus mitochondrial genome.

16.
Sci Rep ; 10(1): 15075, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934285

ABSTRACT

McrA is a key transcription factor that functions as a global repressor of fungal secondary metabolism in Aspergillus species. Here, we report that mcrA is one of the VosA-VelB target genes and McrA governs the cellular and metabolic development in Aspergillus nidulans. The deletion of mcrA resulted in a reduced number of conidia and decreased mRNA levels of brlA, the key asexual developmental activator. In addition, the absence of mcrA led to a loss of long-term viability of asexual spores (conidia), which is likely associated with the lack of conidial trehalose and increased ß-(1,3)-glucan levels in conidia. In supporting its repressive role, the mcrA deletion mutant conidia contain more amounts of sterigmatocystin and an unknown metabolite than the wild type conidia. While overexpression of mcrA caused the fluffy-autolytic phenotype coupled with accelerated cell death, deletion of mcrA did not fully suppress the developmental defects caused by the lack of the regulator of G-protein signaling protein FlbA. On the contrary to the cellular development, sterigmatocystin production was restored in the ΔflbA ΔmcrA double mutant, and overexpression of mcrA completely blocked the production of sterigmatocystin. Overall, McrA plays a multiple role in governing growth, development, spore viability, and secondary metabolism in A. nidulans.


Subject(s)
Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Spores, Fungal/metabolism , Sterigmatocystin/biosynthesis , Transcription Factors/metabolism , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Gene Deletion , Spores, Fungal/genetics , Transcription Factors/genetics
17.
Mitochondrial DNA B Resour ; 5(3): 3585-3587, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33367020

ABSTRACT

The mitogenome of Aspergillus flavus SRRC1009 was sequenced to investigate intraspecific variations on mitochondrial genomes of A. flavus. It shows 29,202 bp with a typical configuration of Aspergillus mitogenome. Sixteen SNPs and 22 INDELs and 17 SNPs and 27 INDELs were identified against AflaGuard® and JQ355000, respectively. Phylogenetic trees present in the three A. flavus mitochondrial genomes were clustered with A. oryzae mitochondrial genome in one clade.

18.
Genes (Basel) ; 11(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31963266

ABSTRACT

The velvet regulator VosA plays a pivotal role in asexual sporulation in the model filamentous fungus Aspergillus nidulans. In the present study, we characterize the roles of VosA in sexual spores (ascospores) in A. nidulans. During ascospore maturation, the deletion of vosA causes a rapid decrease in spore viability. The absence of vosA also results in a lack of trehalose biogenesis and decreased tolerance of ascospores to thermal and oxidative stresses. RNA-seq-based genome-wide expression analysis demonstrated that the loss of vosA leads to elevated expression of sterigmatocystin (ST) biosynthetic genes and a slight increase in ST production in ascospores. Moreover, the deletion of vosA causes upregulation of additional gene clusters associated with the biosynthesis of other secondary metabolites, including asperthecin, microperfuranone, and monodictyphenone. On the other hand, the lack of vosA results in the downregulation of various genes involved in primary metabolism. In addition, vosA deletion alters mRNA levels of genes associated with the cell wall integrity and trehalose biosynthesis. Overall, these results demonstrate that the velvet regulator VosA plays a key role in the maturation and the cellular and metabolic integrity of sexual spores in A. nidulans.


Subject(s)
Aspergillus nidulans/physiology , Fungal Proteins/metabolism , Secondary Metabolism/physiology , Spores, Fungal/metabolism , Reproduction, Asexual/physiology , Spores, Fungal/genetics , Sterigmatocystin/biosynthesis
19.
Food Sci Biotechnol ; 29(2): 265-273, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32064135

ABSTRACT

Steamed ginger ethanolic extract (SGE) is a product with a high 6-shogaol contents and is thought to be more potent than other ginger products. We conducted a 12-week, randomized, double-blind, placebo-controlled clinical trial to determine the effects of SGE on weight and body fat loss. Eighty healthy obese participants were recruited and randomly divided into the SGE and placebo groups. The outcome measures comprised indicators of efficacy (body weight, body mass index, body composition, and blood markers) and safety. Following the supplementation period, mean body weight, body mass index, and body fat level were significantly lower in the SGE group than in the placebo group. No clinically significant changes were observed for any safety parameter. These results suggest that SGE is a potent anti-obesity agent that does not cause significant side effects. Therefore, SGE supplementation combined with lifestyle modification could be effective in the management of body weight and fat mass.

20.
Curr Genet ; 55(4): 391-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19479257

ABSTRACT

The veA gene is one of the key genes in regulating sexual development of Aspergillus nidulans. During the study on the veA gene, it was observed that the veA expression level is slightly higher in a veA1 mutant than in a wild type at 37 degrees C, suggesting that the wild type veA gene is necessary for the negative regulation of the veA expression. In the veA1 mutant, the veA expression was higher than in a wild type grown at 42 degrees C but equal at 30 degrees C. Furthermore, in a veA deletion mutant having its own promoter and the N-terminus of the VeA ORF, expression of the N-terminus by the veA promoter was highly up-regulated, supporting the possibility that the veA gene is important for the negative regulation of the veA expression. Analyses of the lacZ transcript and the beta-galactosidase activity from the reporter strains in the veA1 background, which were constructed by transformation of the lacZ reporter plasmids containing the lacZ gene under the control of the intact or the truncated veA promoters from the -943 to +262 bp region, showed that the truncated promoters produced more veA transcript and higher beta-galactosidase activity than the intact one at 30 degrees C, but equal at 42 degrees C. In addition, the serial-deletion analysis of the veA promoter identified a crucial region in the promoter from -943 to -740 bp for this derepression of the veA expression. Taken together, these results indicated that the veA gene is necessary for the negative regulation of the veA expression. Moreover, the veA expression was derepressed in the light-illuminated condition, where the VeA protein is hardly transported into the nucleus.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Regulation, Fungal , Genes, Fungal , Base Sequence , Gene Deletion , Genes, Reporter , Lac Operon/genetics , Light , Molecular Sequence Data , Mutation , Open Reading Frames , Plasmids , Promoter Regions, Genetic , Transcription, Genetic , beta-Galactosidase/analysis , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL