Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Toxicol ; 39(6): 594-604, 2020.
Article in English | MEDLINE | ID: mdl-32687719

ABSTRACT

AIM: Aflatoxin B1 (AFB1) is hepatotoxic. Numerous studies have shown that mitochondria play an essential role in AFB1-induced steatosis. However, the mechanisms of AFB1-induced steatosis via mitochondria are still obscure. The present study aimed to confirm that AFB1 causes hepatocyte steatosis regulated by cyclooxygenase-2 (COX-2)-induced mitophagy, both in vivo and in vitro. METHODS: Adult male C57BL/6 mice were randomly divided into control group with the same volume of peanut oil and exposure group administered 0.6 mg/kg AFB1 once in 2 days for 1 month. HepG2 and Cas9-PTGS2 cells were treated with 5 µM AFB1 for 48 hours. Then, various indicators were evaluated. RESULTS: Aflatoxin B1 causes liver injury and steatosis with increased alanine aminotransferase, aspartate aminotransferase, total cholesterol, total triglyceride levels in vivo and in vitro, and elevated lipid droplets in HepG2 cells. Cyclooxygenase-2 and mitophagy pathway were induced by AFB1 in both liver tissues and cultured HepG2 cells. Further studies have shown that knockout of COX-2 with the CRISPR/Cas9 system inhibited the AFB1-induced mitophagy and steatosis in HepG2 cells. Also, the inhibition of PTEN-induced putative kinase with RNA interference attenuated the AFB1-induced steatosis. CONCLUSIONS: The results of the current study suggested that AFB1 increases the expression of COX-2, which, in turn, elevates the level of mitophagy, thereby disrupting the normal mitochondrial lipid metabolism and causing steatosis. Thus, this study implies that COX-2 may be a potential target for therapy against AFB1-induced steatosis.


Subject(s)
Aflatoxin B1/toxicity , Cyclooxygenase 2/metabolism , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Mitophagy/drug effects , Animals , Cyclooxygenase 2/genetics , Gene Expression Regulation, Enzymologic/drug effects , Hep G2 Cells , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Random Allocation
2.
J Cell Mol Med ; 23(9): 5920-5933, 2019 09.
Article in English | MEDLINE | ID: mdl-31282064

ABSTRACT

Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and exacerbation of hepatic steatosis but their combined impacts and the potential mechanisms remain to be further elucidated. Here, we showed that exposure to AFB1 impaired mitochondrial dynamics and increased intracellular lipid droplets (LDs) in the liver of HBV-transgenic mice in vivo and the hepatitis B virus X protein (HBx)-expressing human hepatocytes both ex vivo and in vitro. HBx combined with AFB1 exposure also up-regulated receptor interaction protein 1 (RIP1), receptor interaction protein 3 (RIP3) and activated mixed lineage kinase domain like protein (MLKL), providing evidence of necrosome formation in the hepatocytes. The shift of the mitochondrial dynamics towards imbalance of fission and fusion was rescued when MLKL was inhibited in the HBx and AFB1 co-treated hepatocytes. Most importantly, based on siRNA or CRISPR/Cas9 system, we found that the combination of HBx and AFB1 exposure increased cyclooxygenase-2 (COX-2) to mediate up-regulation of RIP3 and dynamin-related protein 1 (Drp1), which in turn promoted location of RIP3-MLKL necrosome on mitochondria, subsequently exacerbated steatosis in hepatocytes. Taken together, these findings advance the understanding of mechanism associated with HBx and AFB1-induced hepatic necrosome formation, mitochondrial dysfunction and steatosis and make COX-2 a good candidate for treatment.


Subject(s)
Aflatoxin B1/metabolism , Cyclooxygenase 2/metabolism , Fatty Liver/pathology , Hepatitis B/pathology , Mitochondrial Dynamics/physiology , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Dynamins/metabolism , Hep G2 Cells , Hepatitis B virus , Hepatocytes/transplantation , Hepatocytes/virology , Humans , Lipid Droplets/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Nuclear Pore Complex Proteins/metabolism , Protein Kinases/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Transplantation, Heterologous
3.
Pancreas ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696438

ABSTRACT

ABSTRACT: The incidence rate of hypertriglyceridemia pancreatitis (HTGP) has experienced a notable increase in recent years, with eclipsing alcohol as the second leading cause of acute pancreatitis (AP). HTGP is often associated with more severe local and systemic complications. Recognized as a metabolic disorder hypertriglyceridemia (HTG), holds significant relevance in the pathogenesis of HTGP, yet its mechanisms are not fully understood. Both primary (genetic) and secondary (acquired) factors contribute to elevated triglyceride (TG) levels, which concurrently influence the progression of HTGP. This article presents a comprehensive review of the evolving research on HTGP pathogenesis, encompassing lipid synthesis and metabolism, calcium signal transduction, inflammatory mediators, endoplasmic reticulum stress, autophagy, mitochondrial injury by fatty acids, oxidative stress response, genetic factors, and gene mutations. By unraveling the intricate mechanisms underlying HTGP, this article aims to enhance physicians' understanding of the disease and facilitate the development of potential targeted pharmacological interventions for patients.

4.
Virus Res ; 339: 199288, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38043724

ABSTRACT

Mulberry crinkle leaf virus (MCLV) is a member of the genus Mulcrilevirus, family Geminiviridae. The expression and functions of the V4 and V5 genes encoded by the MCLV genome remain unknown. Here, we confirmed the expression of V4 and V5 by analyzing the V4 and V5 mRNAs and the promoter activity of individual ORFs upstream sequences. The functions of V4 and V5 were investigated by constructing Agrobacterium-mediated infectious clones of wild-type MCLV variant П (MCLV vII), MCLVwt and MCLV vП mutants, such as MCLVmV4 (start codon of V4 ORF mutated), MCLVdV4 (5'-end partial deletion of V4 ORF sequence) and MCLVmV5 (V5 ORF start codon mutated). Although MCLVwt, MCLVmV4, and MCLVdV4 could infect natural host mulberry and experimental tomato plants systematically, the replication of the MCLVmV4 and MCLVdV4 genomes was obviously reduced compared to MCLVwt in both mulberry and tomato plants. MCLV vП expressing V5 could infect Nicotiana benthamiana plants systematically, but MCLVmV5 could not, implying that V5 is needed for MCLV vП to infect N. benthamiana plants. Taken together, V4 is involved in replication of the MCLV genome in host plants, and V5 potentially might extend the host range. Our findings lay a foundation for in-depth insight into the functions of MCLV-encoded proteins and provide a novel perspective for the subsequent study of MCLV-host plant interactions.


Subject(s)
Morus , Nicotiana , Base Sequence , Morus/genetics , Codon, Initiator , Plants , Virus Replication/genetics , Plant Diseases
5.
Animals (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731324

ABSTRACT

Bartonella is an intracellular parasitic zoonotic pathogen that can infect animals and cause a variety of human diseases. This study investigates Bartonella prevalence in small mammals in Yunnan Province, China, focusing on tissue tropism. A total of 333 small mammals were sampled from thirteen species, three orders, four families, and four genera in Heqing and Gongshan Counties. Conventional PCR and real-time quantitative PCR (qPCR) were utilized for detection and quantification, followed by bioinformatic analysis of obtained DNA sequences. Results show a 31.5% detection rate, varying across species. Notably, Apodemus chevrieri, Eothenomys eleusis, Niviventer fulvescens, Rattus tanezumi, Episoriculus leucops, Anourosorex squamipes, and Ochotona Thibetana exhibited infection rates of 44.4%, 27.7%, 100.0%, 6.3%, 60.0%, 23.5%, and 22.2%, respectively. Genetic analysis identified thirty, ten, and five strains based on ssrA, rpoB, and gltA genes, with nucleotide identities ranging from 92.1% to 100.0%. Bartonella strains were assigned to B. grahamii, B. rochalimae, B. sendai, B. koshimizu, B. phoceensis, B. taylorii, and a new species identified in Episoriculus leucops (GS136). Analysis of the different tissues naturally infected by Bartonella species revealed varied copy numbers across different tissues, with the highest load in spleen tissue. These findings underscore Bartonella's diverse species and host range in Yunnan Province, highlighting the presence of extensive tissue tropism in Bartonella species naturally infecting small mammalian tissues.

6.
PLoS One ; 19(4): e0301841, 2024.
Article in English | MEDLINE | ID: mdl-38626103

ABSTRACT

The number of people suffering from scrub typhus, which is not of concern, is increasing year by year, especially in Yunnan Province, China. From June 1, 2021 to August 15, 2022, a total of 505 mammalian samples were collected from farm, forest, and residential habitats with high incidence of scrub typhus in Yunnan, China, for nPCR (nested PCR) and qPCR (quantitative real-time PCR) detection of Orientia tsutsugamushi. A total of 4 orders of murine-like animals, Rodentia (87.52%, n = 442), Insectivora (10.29%, n = 52), Lagomorpha (1.79%, n = 9) and Scandentia (0.40%, n = 2) were trapped. Comparing the qPCR infection rates in the three habitats, it was no significant difference that the infection rate of residential habitat (44.44%) and that of the farm habitat (45.05%, P>0.05), which is much larger than that of the forest habitat (3.08%) (P<0.001). Three genotypes (Karp-like, Kato-like and TA763-like) of O. tsutsugamushi were found from Yunnan, China in this study.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Humans , Animals , Mice , Scrub Typhus/diagnosis , Farms , China/epidemiology , Orientia tsutsugamushi/genetics , Rodentia/genetics , Real-Time Polymerase Chain Reaction , Epidemiologic Studies , Forests , Eulipotyphla/genetics
7.
Front Psychol ; 14: 1152823, 2023.
Article in English | MEDLINE | ID: mdl-37284479

ABSTRACT

To investigate the relationship among post-traumatic stress disorder (PTSD), posttraumatic growth (PTG), social support, and coping style of university student volunteers in the prevention and control of the coronavirus in 2020, a total of 2,990 university student volunteers (students who are enrolled in a university and involved in volunteer activities) from 20 universities in Sichuan Province participated in the prevention and control of the epidemic were investigated when March 20-31, 2020 when the coronavirus first occurred using the post-traumatic stress disorder questionnaire, posttraumatic growth questionnaire, university student social support questionnaire and coping style questionnaire. The results showed that (1) 7.06% of university student volunteers had some degree of PTSD symptoms (the total PCL-C score was 38-49), and 2.88% had obvious PTSD symptoms, (2) PTSD level of university student volunteers was significantly positively correlated with negative coping style, and significantly negatively correlated with social support and positive coping style; on the contrary, the PTG level is significantly positively correlated with social support and positive coping styles, and (3) Positive coping style plays a partial mediating role in the influence of social support on PTG; in the influence of social support on PTSD, the mediating effect of positive or negative coping style was not significant. These results show that in the prevention and control of the coronavirus, the positive coping style and social support of university student volunteers can positively predict the PTG level of them, while the negative coping style can positively predict the severity of their PTSD symptoms. Among them, a positive coping style plays a partial mediating role in the influence of social support on the PTG level.

8.
World J Gastroenterol ; 29(15): 2294-2309, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37124891

ABSTRACT

BACKGROUND: Ferroptosis is involved in developing inflammatory diseases; yet, its role in acute hypertriglyceridemic pancreatitis (HTGP) remains unclear. AIM: To explore whether ferroptosis is involved in the process of HTGP and elucidate its potential mechanisms. METHODS: An HTGP mouse model was induced using intraperitoneal injection of P-407 and caerulein (CAE). Then, pancreatic tissues from the model animals were subjected to proteome sequencing analysis. The pathological changes and scores of the pancreas, lung, and kidney were determined using hematoxylin-eosin staining. The levels of serum amylase (AMY), triglyceride, and total cholesterol were measured with an automatic blood cell analyzer. Additionally, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß were determined by enzyme linked immunosorbent assay. Malonaldehyde (MDA), glutathione (GSH), and Fe2+ were detected in the pancreas. Finally, immunohistochemistry was performed to assess the expression of ferroptosis-related proteins. RESULTS: Proteome sequencing revealed that ferroptosis was involved in the process of HTGP and that NADPH oxidase (NOX) 2 may participate in ferroptosis regulation. Moreover, the levels of serum AMY, TNF-α, IL-6, and IL-1ß were significantly increased, MDA and Fe2+ were upregulated, GSH and ferroptosis-related proteins were reduced, and the injury of the pancreas, lung, and kidney were aggravated in the P407 + CAE group compared to CAE and wild type groups (all P < 0.05). Notably, the inhibition of ferroptosis and NOX2 attenuated the pathological damage and the release of TNF-α, IL-6, and IL-1ß in the serum of the mice. CONCLUSION: Ferroptosis was found to have an important role in HTGP and may be considered a potential target for clinical treatment.


Subject(s)
Ferroptosis , Pancreatitis , Mice , Animals , Interleukin-6 , Tumor Necrosis Factor-alpha , Proteome , Pancreatitis/drug therapy , Acute Disease
9.
Toxics ; 11(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37624159

ABSTRACT

The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 µg/L) and PS-500 (1 µg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 µg/L) or PS-500 (1 µg/L). Additionally, coexposure to PS-50 (15 µg/L) and PS-500 (1 µg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 µg/L) and PS-500 (1 µg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.

10.
Vaccines (Basel) ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37766153

ABSTRACT

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease transmitted by several rodent species. We obtained clinical data of HFRS patients from the medical records of the People's Hospital of Xiangyun County in Dali Prefecture from July 2019 to August 2021. We collected epidemiological data of HFRS patients through interviews and investigated host animals using the night clip or night cage method. We systematically performed epidemiological analyses of patients and host animals. The differences in the presence of rodent activity at home (χ2 = 8.75, p = 0.031 < 0.05), of rodent-proof equipment in the food (χ2 = 9.19, p = 0.025 < 0.05), and of rodents or rodent excrement in the workplace (χ2 = 10.35, p = 0.014 < 0.05) were statistically different in the four clinical types, including mild, medium, severe, and critical HFRS-associated diseases. Furthermore, we conducted molecular detection of orthohantavirus in host animals. The total orthohantavirus infection rate of rodents was 2.72% (9/331); the specific infection rate of specific animal species was 6.10% (5/82) for the Apodemus chevrieri, 100% (1/1) for the Rattus nitidus, 3.77% (2/53) for the Rattus norvegicus, and 12.50% (1/8) for the Crocidura dracula. In this study, a total of 21 strains of orthohantavirus were detected in patients and rodents. The 12 orthohantavirus strains from patients showed a closer relationship with Seoul orthohantavirus (SEOOV) L0199, DLR2, and GZRn60 strains; the six orthohantavirus strains from Rattus norvegicus and Apodemus chevrieri were closely related to SEOOV GZRn60 strain. One strain (XYRn163) from Rattus norvegicus and one strain (XYR.nitidus97) from Rattus nitidus were closely related to SEOOV DLR2 strain; the orthohantavirus strain from Crocidura dracula was closely related to the Luxi orthohantavirus (LUXV) LX309 strain. In conclusion, patients with HFRS in Xuangyun County of Dali Prefecture are predominantly affected by SEOOV, with multiple genotypes of orthohantavirus in host animals, and, most importantly, these orthohantavirus strains constantly demonstrated zoonotic risk in humans.

11.
Pathogens ; 12(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38133285

ABSTRACT

The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.

12.
Viruses ; 15(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37766371

ABSTRACT

The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali and Nujiang prefectures of Western Yunnan Province, China. The number of overall CoV positives was 20, including ß-CoV (n = 13) and α-CoV (n = 7), with a 3.98% prevalence in rectal tissue samples. The identity of the partial RdRp genes obtained for 13 strains of ß-CoV was 83.42-99.23% at the nucleotide level, and it is worth noting that the two strains from Kachin red-backed voles showed high identity to BOV-36/IND/2015 from Indian bovines and DcCoV-HKU23 from dromedary camels (Camelus dromedarius) in Morocco; the nucleotide identity was between 97.86 and 98.33%. Similarly, the identity of the seven strains of α-CoV among the partial RdRp sequences was 94.00-99.18% at nucleotide levels. The viral load in different tissues was measured by quantitative RT-PCR (qRT-PCR). The average CoV viral load in small mammalian rectal tissue was 1.35 × 106 copies/g; differently, the mean CoV viral load in liver, heart, lung, spleen, and kidney tissue was from 0.97 × 103 to 3.95 × 103 copies/g, which revealed that CoV has extensive tropism in rectal tissue in small mammals (p < 0.0001). These results revealed the genetic diversity, epidemiology, and infective tropism of α-CoV and ß-CoV in small mammals from Dali and Nujiang, which deepens the comprehension of the retention and infection of coronavirus in natural hosts.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Cattle , Betacoronavirus , China/epidemiology , Mammals , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Arvicolinae , Camelus , Nucleotides , RNA-Dependent RNA Polymerase
13.
Int J Biol Sci ; 18(8): 3405-3420, 2022.
Article in English | MEDLINE | ID: mdl-35637956

ABSTRACT

Objectives: Vaccination still remains as the most effective approach for preventing infectious diseases such as those caused by virus infection, with cell-based vaccine manufacturing being one flexible solution regarding the spectrum of infectious disorders it can prevent. Rapid cell-based virus propagation can enable high yield of vaccines against viral diseases that may offer critical values in the industry when handling emergent situations such as the ongoing viral disease pandemic. Methods: Through investigating the phenomenon and biological mechanism underlying redox-triggered cell survival towards enhanced viral particle production, this study explores novel strategies for improved yield of viral particles at a reduced cost to meet the increasing demand on cell-based vaccine manufacturing against viral diseases. Results: We found in this study that cold atmospheric plasma (CAP), composed of multiple reactive oxygen and nitrogen species including H2O2, could effectively enhance virus replication via triggering cell mitophagy that was dynamically modulated by the p-EGFR(Tyr1068)/p-Drp1(Ser616) axis using IBRV and MDBK as the virus and cell models, respectively; and removing H2O2 can further enhance virus yield via releasing cells from excessive G0/G1 cell cycle arrest. The observed efficacy of CAP was extended to other viruses such as CDV and CPV. Conclusion: This study provides experimental evidences supporting the use of CAP as a modulator of cell survival including mitophagy and mitochondria dynamics, and makes CAP an interesting and promising tool for enhancing the yield of viral vaccines if translated into the industry.


Subject(s)
Plasma Gases , Virus Diseases , ErbB Receptors , Humans , Hydrogen Peroxide , Mitophagy , Phosphorylation , Plasma Gases/pharmacology , Virus Replication
14.
Cell Prolif ; 55(11): e13304, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35811356

ABSTRACT

OBJECTIVES: Hepatitis B virus X (HBx) is closely associated with HBV-related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx-associated hepatocarcinogenesis phenotypes and mediating anti-HBx antibody-mediated tumour suppression remains unknown. MATERIALS AND METHODS: We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx-Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti-HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx-associated hepatocarcinogenesis. RESULTS: Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV-infected liver tissues and HBV-associated HCC tissues. Our results demonstrated that HBx-expression promotes AKT phosphorylation (p-AKTThr308/Ser473 ), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV-associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site-directed mutagenesis (AKTT308A , AKTS473A ) of p-AKTThr308/Ser473 mimics dephosphorylation, genetics-based B56γ overexpression, and intracellular anti-HBx antibody inhibited cell growth, migration, and invasion in HBx-expressing HCC cells. CONCLUSIONS: Our results demonstrated that B56γ inhibited HBV/HBx-dependent hepatocarcinogenesis by regulating the dephosphorylation of p-AKTThr308/Ser473 in HCC cells. The intracellular anti-HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV-related HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Mice , Animals , Humans , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Matrix Metalloproteinase 2/metabolism , Protein Phosphatase 2/metabolism , Mice, Nude , Carcinogenesis/genetics , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B/metabolism
15.
ACS Appl Mater Interfaces ; 14(30): 34706-34713, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35862432

ABSTRACT

A design-inexpensive, effective, and easy-to-prepare additive in the large-scale preparation of perovskite solar cells (PSCs) is urgently desired to alleviate the future energy crisis. Carbon-based quantum dots have demonstrated novel nanomaterials with excellent chemical stability and high electrical conductivity, which exhibit great potential as additives for perovskite optoelectronics. Herein, we designed novel highly fluorescent collagen-based quantum dots (Col-QDs) and thoroughly studied the micromorphological characteristics, photoluminescence properties, and the states of surface-functionalized groups on the Col-QDs. It is found that the introduction of Col-QDs in the two-dimensional (2D) perovskite precursor can be further confirmed as an efficient interlinkage via Col-Pb bands in the pure 2D perovskite heterojunction, which significantly improves the crystallinity, orientation, and interlayer coupling of perovskite crystal plates, as observed by grazing incidence X-ray diffraction (GIWAXS) and X-ray photoelectron spectroscopy (XPS). Finally, the champion Col-QD additive can efficiently modulate the photovoltaic performance of pure 2D PSCs with a significant increase of photoelectric conversion efficiency (PCE) from 8.18% up to 10.45%, which ranks among the best efficiencies of highly pure 2D PSCs. These results provide a facile and feasible approach to modulate the interlayer interaction of pure 2D perovskites and further improve their output of PSCs, which would further facilitate the burgeoning applications of the Col-QDs in various perovskite-based optical-related fields.

16.
Cancer Biother Radiopharm ; 36(1): 10-17, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32762544

ABSTRACT

Background: Various types of tumors are likely to acquire drug resistance over time. Hence, the development of novel therapies to overcome drug resistance is critical. Studies have demonstrated that drug resistance is closely associated with the dynamic regulation of mitochondria in tumor cells. The dynamin-related protein 1 (Drp1) is involved in the regulation of mitochondrial fission and plays an important role in maintaining mitochondrial morphology, function, and distribution. It is a key protein in mitochondrial quality control. Drp1 is a GTPase localized to the cytoplasm and is a potential target in cancer therapy. A variety of drugs targeting Drp1 have shown great promise in reducing the viability and proliferation of cancer cells. The dynamic regulation of Drp1-mediated mitochondria is closely associated with tumor development, and treatment. Aim: In this article, the authors reviewed the occurrence and progression of mitochondrial fission regulated by Drp1, and its influence on cell cycle, autophagy, apoptosis, migration, invasion, the molecular mechanism of tumor stemness, and metabolic reprogramming. Targeted inhibition of Drp1 and mitochondrial fission could reduce or prevent tumor occurrence and progression in a variety of cancers. Drp1 inhibitors could reduce tumor stemness and enhance tumor sensitivity to chemotherapeutic drugs. Conclusion: Research into identifying compounds that could specifically target Drp1 will be valuable for overcoming drug resistance in tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis/pathology , Dynamins/metabolism , Mitochondrial Dynamics/drug effects , Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Dynamins/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays
17.
ACS Synth Biol ; 10(2): 309-317, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33502842

ABSTRACT

Cell-based vaccine manufacturing is an important strategy for viral disease prevention. Cultivating cells in suspension could maximize the utility of large bioreactors for cost-effective and scaled up vaccine production, where adapting adherent cells to suspension culture is the bottleneck and key. Through whole transcriptome sequencing of suspension and adherent strains of BHK-21 and CHO-K1 cells followed by the identification of differentially expressed genes, mutational analysis, gene ontology, and pathway enrichment analysis, we identified four candidate genes, PABPC1, LARS, GLUL, PFN1, feasible for genetically modulating anchorage-dependent cells toward cell suspension culture, and experimentally validated the functionality of PABPC1 in both BHK-21 and CHO-K1 cells. Our study unveiled a novel role of PABPC1 that could potentially aid in the establishment of a cost-effective vaccine manufacturing platform relying on cell cultivation in suspension.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Fibroblasts/metabolism , Gene Expression , Poly(A)-Binding Protein I/genetics , Animals , Apoptosis/genetics , CHO Cells , Cell Proliferation/genetics , Cricetinae , Cricetulus , Gene Knockdown Techniques , Gene Regulatory Networks , Suspensions , Transfection , Viral Vaccines/biosynthesis , Exome Sequencing/methods
18.
J Cancer ; 12(19): 5977-5986, 2021.
Article in English | MEDLINE | ID: mdl-34476012

ABSTRACT

Purpose: Androgen receptor-independent prostate cancers do not respond to androgen blockage therapies and suffer from high recurrence rate. We aim to contribute to the establishment of novel therapeutic approaches against such malignancies. Materials and Methods: We examined whether and how cold atmospheric plasma delivers selectivity against AR-independent prostate cancers via cell viability, transwell assay, wound healing, cell apoptosis assay, flow cytometry, intracellular hydrogen peroxide determination assay, RONS scavenger assay and western blot using human normal epithelial prostatic cells PNT1A and AR-negative DU145 prostate cancer cells. Results: We show that cold atmospheric plasma could selectively halt cell proliferation and migration in androgen receptor-independent cells as a result of induced cell apoptosis and G0/G1 stage cell cycle arrest, and such outcomes were achieved through modulations on the MAPK and NF-kB pathways in response to physical plasma induced intracellular redox level. Conclusion: Our study reports cold atmospheric plasma induced reduction on the proliferation and migration of androgen receptor-independent prostate cancer cells that offers novel therapeutic insights on the treatment of such cancers, and provides the first evidence on physical plasma induced cell cycle G0/G1 stage arrest that warrants the exploration on the synergistic use of cold atmospheric plasma and drugs such as chemotherapies in eradicating such cancer cells.

19.
Virulence ; 12(1): 679-689, 2021 12.
Article in English | MEDLINE | ID: mdl-33554733

ABSTRACT

Enhancing virus multiplication could assist in the rapid production of vaccines against viral diseases. Cold atmospheric plasma (CAP), a physical approach relying on reactive oxygen species to achieve the desirable cellular outcome, was shown to be effective in enhancing virus propagation, where bovine rhinotrachieitis virus and Madin-Darby Bovine Kidney cells were used as the modeling virus and cell line, respectively. CAP was shown to create synergies with virus infection in arresting host cells at the G2/M stage, decreasing cell membrane potential, increasing intracellular calcium level, and inducing selective autophagy. In addition, CAP was demonstrated to suppress virus-triggered immunogenic signaling as evaluated by IRF7 expression. We presented evidences on CAP-triggered maximization of host resources toward virus multiplication that is advantageous for viral vaccine production, and opened a novel regime for applying CAP in the sector of medical care and health.


Subject(s)
Host Microbial Interactions/drug effects , Plasma Gases/pharmacology , Virus Replication/drug effects , Animals , Autophagy/drug effects , Cattle , Cell Cycle/drug effects , Cell Line , Host Microbial Interactions/immunology , Kidney/cytology , Virus Replication/immunology
20.
J Virol Methods ; 289: 114038, 2021 03.
Article in English | MEDLINE | ID: mdl-33301791

ABSTRACT

Cell-based vaccine manufacturing is a flexible and cost-effective approach for vaccine production which, however, requires cell adaptation to new vaccine strains. Generating one omnipotent or semi-omnipotent cell line feasible for the production of multiple viruses could help resolve this problem. We previously proposed virus Baltimore subtyping-based choice of receptors and a panel of minimally preferred receptors for the establishment of cells with a broad virus susceptibility spectrum. With the aim of establishing cells sensitive to viruses of livestocks including bovine, ovine and canine, we selected TfR and Nectin 4 from the minimally preferred receptor panel, and successfully sensitized the starting cell line MDBK to CPV and CDV infection. Our study is a preliminary validation of our previously identified associations between host receptor usage and virus Baltimore subtyping. Evidence from more viruses of the same Baltimore subtyping and more starting cell lines need to be used to consolidate our results.


Subject(s)
Receptors, Virus , Viruses , Animals , Cattle , Cell Adhesion Molecules/genetics , Cell Line , Dogs , Nectins , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL