Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1415722, 2024.
Article in English | MEDLINE | ID: mdl-39015175

ABSTRACT

Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Drug Resistance, Neoplasm , Osteosarcoma , RNA, Long Noncoding , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/diagnosis , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , RNA, Long Noncoding/genetics , Drug Resistance, Neoplasm/genetics , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/diagnosis , Gene Expression Regulation, Neoplastic
2.
Anim Nutr ; 17: 188-207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800735

ABSTRACT

Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.

3.
ACS Appl Mater Interfaces ; 16(24): 31076-31084, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38848221

ABSTRACT

With the rapid demand for lithium-ion batteries due to the widespread application of electric vehicles, a significant amount of battery electrode pieces requiring urgent treatment are generated during battery production and disposal. The strong bonding caused by the presence of binders makes it challenging to achieve thorough separation between the cathode active materials and Al foil, posing difficulties in efficient battery material recycling. To address this issue, a plasma-ultrasonically combined physical separation method is proposed in this study. This method utilizes plasma-generated excited-state radicals assisted by ultrasonic waves to separate active materials and current collectors. The results indicate that the binders are effectively decomposed under plasma treatment at 13.56 MHz, 100 W, and 10 min in an oxygen atmosphere, resulting in a separation efficiency of 96.8 wt % for the cathode materials. Characterization results demonstrate that the morphology, crystal structure, and chemical composition of the recycled cathode active materials remain unchanged, facilitating subsequent direct restoration and hydrometallurgical recycling. Simultaneously, the Al foil is also completely recycled for subsequent reuse. Compared with traditional methods of separating cathode active materials and aluminum foil, the method proposed in this study has significant economic and environmental potential. It can promote the recycling of battery materials and the development of sustainable transportation.

4.
Adv Sci (Weinh) ; 11(22): e2400600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582525

ABSTRACT

With the electrochemical performance of batteries approaching the bottleneck gradually, it is increasingly urgent to solve the safety issue. Herein, all-in-one strategy is ingeniously developed to design smart, safe, and simple (3S) practical pouch-type LiNi0.8Co0.1Mn0.1O2||Graphite@SiO (NCM811||Gr@SiO) cell, taking full advantage of liquid and solid-state electrolytes. Even under the harsh thermal abuse and high voltage condition (100 °C, 3-4.5 V), the pouch-type 3S NCM811||Gr@SiO cell can present superior capacity retention of 84.6% after 250 cycles (based pouch cell: 47.8% after 250 cycles). More surprisingly, the designed 3S NCM811||Gr@SiO cell can efficiently improve self-generated heat T1 by 45 °C, increase TR triggering temperature T2 by 40 °C, and decrease the TR highest T3 by 118 °C. These superior electrochemical and safety performances of practical 3S pouch-type cells are attributed to the robust and stable anion-induced electrode-electrolyte interphases and local solid-state electrolyte protection layer. All the fundamental findings break the conventional battery design guidelines and open up a new direction to develop practical high-performance batteries.

5.
Front Microbiol ; 15: 1364425, 2024.
Article in English | MEDLINE | ID: mdl-38450166

ABSTRACT

Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6Δ) is the most sensitive to CA. Based on the omics analysis of ERG6Δ under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP+ were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6Δ. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.

6.
Front Microbiol ; 15: 1416903, 2024.
Article in English | MEDLINE | ID: mdl-38989024

ABSTRACT

Levulinic acid, a hydrolysis product of lignocellulose, can be metabolized into important compounds in the field of medicine and pesticides by engineered strains of Saccharomyces cerevisiae. Levulinic acid, as an intermediate product widely found in the conversion process of lignocellulosic biomass, has multiple applications. However, its toxicity to Saccharomyces cerevisiae reduces its conversion efficiency, so screening Saccharomyces cerevisiae genes that can tolerate levulinic acid becomes the key. By creating a whole-genome knockout library and bioinformatics analysis, this study used the phenotypic characteristics of cells as the basis for screening and found the HMX1 gene that is highly sensitive to levulinic acid in the oxidative stress pathway. After knocking out HMX1 and treating with levulinic acid, the omics data of the strain revealed that multiple affected pathways, especially the expression of 14 genes related to the cell wall and membrane system, were significantly downregulated. The levels of acetyl-CoA and riboflavin decreased by 1.02-fold and 1.44-fold, respectively, while the content of pantothenic acid increased. These findings indicate that the cell wall-membrane system, as well as the metabolism of acetyl-CoA and riboflavin, are important in improving the resistance of Saccharomyces cerevisiae to levulinic acid. They provide theoretical support for enhancing the tolerance of microorganisms to levulinic acid, which is significant for optimizing the conversion process of lignocellulosic biomass to levulinic acid.

7.
Front Immunol ; 14: 1285442, 2023.
Article in English | MEDLINE | ID: mdl-38264658

ABSTRACT

Introduction: Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods: We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion: The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Osteoporosis , Adult , Humans , Animals , Rats , Glucocorticoids , Metabolome , Clostridiales
SELECTION OF CITATIONS
SEARCH DETAIL