ABSTRACT
In this issue of Cell, Bryska-Bishop et al. report the release of the expanded, high-depth sequencing data that characterize the fourth phase of the 1000 Genomes Project. Using extensive comparisons and benchmarks, they demonstrate how this dataset is positioned to serve as a more comprehensive and accurate resource for global genomics.
Subject(s)
Genome, Human , Genomics , Benchmarking , HumansABSTRACT
In this issue of Cell, Ma et al. reveal a mechanistic role for PIEZO1 in iron homeostasis through molecular genetic mouse studies. They also demonstrate implications for human iron overload and deficiency syndromes, susceptibility to malarial infection, and red blood cell turnover in persons of African ancestries.
Subject(s)
Iron , Malaria , Animals , Erythrocytes , Homeostasis , Humans , Ion Channels/genetics , MiceABSTRACT
Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.
Subject(s)
Haploinsufficiency , Spastic Paraplegia, Hereditary , Child , Humans , Haploinsufficiency/genetics , Mutation , Mutation, Missense/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Golgi Apparatus/metabolism , Spastic Paraplegia, Hereditary/geneticsABSTRACT
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.
Subject(s)
Genetic Variation , Genome, Human/genetics , Genomics , Health , Human Migration , Africa/ethnology , DNA Repair/genetics , Datasets as Topic , Female , Gene Flow , Genetics, Medical , Genetics, Population , Health/history , History, Ancient , Human Migration/history , Humans , Immunity/genetics , Language , Male , Metabolism/genetics , Selection, Genetic , Whole Genome SequencingABSTRACT
To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and globalgovernance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts.
Subject(s)
Black People , Genomics , Biological Evolution , Computational Biology , Humans , PharmacogeneticsABSTRACT
The vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle. Community engagement uniquely offers researchers in human genetics and genomics an opportunity to pursue that vision successfully, including by addressing underrepresentation in genomics research.
Subject(s)
Genomics , Research Personnel , Humans , United StatesABSTRACT
Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.
Subject(s)
Genetic Variation/genetics , Protein Precursors/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Alveolar Epithelial Cells/metabolism , Animals , Caenorhabditis elegans/genetics , Humans , Lung/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactants/metabolismABSTRACT
Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.
Subject(s)
Bone and Bones/metabolism , Coat Protein Complex I/genetics , Coatomer Protein/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Osteoporosis/genetics , Animals , Ascorbic Acid/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Coat Protein Complex I/deficiency , Coatomer Protein/chemistry , Coatomer Protein/deficiency , Collagen Type I/genetics , Collagen Type I/metabolism , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Embryo, Nonmammalian , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Golgi Apparatus , Haploinsufficiency , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mice , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Severity of Illness Index , ZebrafishABSTRACT
Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.
Subject(s)
Epitopes, T-Lymphocyte , HIV-1 , HLA-C Antigens , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , HLA-C Antigens/immunology , HLA-C Antigens/metabolism , HLA-C Antigens/genetics , HIV-1/immunology , HIV-1/genetics , T-Lymphocytes, Cytotoxic/immunology , Amino Acid Sequence , Protein Binding , HIV Infections/immunology , HIV Infections/virology , HIV AntigensABSTRACT
PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Subject(s)
Abnormalities, Multiple , Hand Deformities, Congenital , Micrognathism , Abnormalities, Multiple/genetics , Actins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Hand Deformities, Congenital/genetics , Humans , Micrognathism/genetics , Retrospective StudiesABSTRACT
Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10-16) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.
Subject(s)
Black People/genetics , Exome Sequencing , Genetic Variation , Botswana , Cohort Studies , Gene Pool , Genetics, Population , Genome, Human , Geography , Humans , Phylogeny , Principal Component AnalysisABSTRACT
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect â¼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Subject(s)
Codon/genetics , Genetic Association Studies , Mutation, Missense/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Amino Acid Sequence , Child , Cohort Studies , Computer Simulation , Demography , Female , Heterozygote , Humans , Male , Neurofibromin 1/chemistry , Phenotype , Young AdultABSTRACT
CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
Subject(s)
Developmental Disabilities/genetics , Epilepsy, Generalized/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Developmental Disabilities/physiopathology , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/etiology , Epilepsies, Myoclonic/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/etiology , Exome/genetics , Female , Genetic Variation , Humans , Infant , Intellectual Disability/etiology , Intellectual Disability/genetics , Male , Mutation/genetics , Phenotype , Status Epilepticus/diagnosis , Status Epilepticus/etiology , Status Epilepticus/genetics , Young AdultABSTRACT
PURPOSE: The persistence of hypermutable CGN (CGG, CGA, CGC, CGU) arginine codons at high frequency suggests the possibility of negative selective pressure at these sites and that arginine codon usage could be a predictive indicator of human disease genes. METHODS: We analyzed arginine codons (CGN, AGG, AGA) from all canonical Ensembl protein coding gene transcripts before comparing the frequency of CGN codons between genes with and without human disease associations and with gnomAD constraint metrics. RESULTS: The frequency of CGN codons among a gene's total arginine codon count was higher in genes linked to syndromic autism spectrum disorder (ASD) compared with genes not associated with ASD. A comparison of genes annotated as dominant or recessive with control genes not matching either classification revealed a progressive increase in CGN codon frequency. Moreover, CGN frequency was positively correlated with a gene's probability of loss-of-function intolerance (pLI) score and negatively correlated with observed-over-expected ratios for both loss-of-function and missense variants. CONCLUSION: Our findings indicate that genes utilizing CGN arginine codons rather than AGG or AGA are more likely to underlie single-gene disorders, particularly for dominant phenotypes, and thus constitute candidate genes for the study of human genetic disease.
Subject(s)
Arginine , Autism Spectrum Disorder , Arginine/genetics , Autism Spectrum Disorder/genetics , Bias , Codon Usage , Escherichia coli/genetics , HumansABSTRACT
Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans.
Subject(s)
Alleles , Functional Laterality/genetics , Membrane Proteins/genetics , Mutation , Situs Inversus/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Cysteine/genetics , Exome/genetics , Female , Fetal Diseases/genetics , Heart Defects, Congenital/genetics , Heterotaxy Syndrome , Homozygote , Humans , Infant, Newborn , Introns/genetics , Male , Membrane Proteins/chemistry , Mice , Middle Aged , Models, Molecular , Mutation, Missense , Oryzias/genetics , Pedigree , RNA Splicing/geneticsABSTRACT
The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous â¼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.
Subject(s)
Arrhythmias, Cardiac/genetics , Muscle Weakness/genetics , Rhabdomyolysis/genetics , Alleles , Arabs/genetics , Arrhythmias, Cardiac/diagnosis , Base Sequence , Child , Child, Preschool , Endoplasmic Reticulum Stress/genetics , Exome , Exons , Female , Gene Deletion , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Hispanic or Latino/genetics , Homozygote , Humans , Infant , Male , Molecular Sequence Data , Muscle Weakness/diagnosis , Pedigree , Rhabdomyolysis/diagnosis , White People/geneticsABSTRACT
PURPOSE: Maternal diabetes is a known teratogen that can cause a wide spectrum of birth defects, collectively referred to as diabetic embryopathy (DE). However, the pathogenic mechanisms underlying DE remain uncertain and there are no definitive tests to establish the diagnosis. Here, we explore the potential of DNA methylation as a diagnostic biomarker for DE and to inform disease pathogenesis. METHODS: Bisulfite sequencing was used to identify gene regions with differential methylation between DE neonates and healthy infants born with or without prenatal exposure to maternal diabetes, and to investigate the role of allele-specific methylation at implicated sites. RESULTS: We identified a methylation signature consisting of 237 differentially methylated loci that distinguished infants with DE from control infants. These loci were found proximal to genes associated with Mendelian syndromes that overlap the DE phenotype (e.g., CACNA1C, TRIO, ANKRD11) or genes known to influence embryonic development (e.g., BRAX1, RASA3). Further, we identified allele-specific methylation (ASM) at 11 of these loci, within which 61.5% of ASM single-nucleotide variants are known expression quantitative trait loci (eQTLs). CONCLUSIONS: Our study suggests a role for aberrant DNA methylation and cis-sequence variation in the pathogenesis of DE and highlights the diagnostic potential of DNA methylation for teratogenic birth defects.
Subject(s)
DNA Methylation/genetics , Diabetes Mellitus/embryology , Fetal Diseases/genetics , Alleles , Biomarkers , CpG Islands/genetics , Diabetes Complications/genetics , Diabetes Mellitus/genetics , Female , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Polymorphism, Single Nucleotide/genetics , Pregnancy , Quantitative Trait Loci/geneticsABSTRACT
Autosomal recessive COX4I1 deficiency has been previously reported in a single individual with a homozygous pathogenic variant in COX4I1, who presented with short stature, poor weight gain, dysmorphic features, and features of Fanconi anemia. COX4I1 encodes subunit 4, isoform 1 of cytochrome c oxidase. Cytochrome c oxidase is a respiratory chain enzyme that plays an important role in mitochondrial electron transport and reduces molecular oxygen to water leading to the formation of ATP. Defective production of cytochrome c oxidase leads to a variable phenotypic spectrum ranging from isolated myopathy to Leigh syndrome. Here, we describe two siblings, born to consanguineous parents, who presented with encephalopathy, developmental regression, hypotonia, pathognomonic brain imaging findings resembling Leigh-syndrome, and a novel homozygous variant on COX4I1, expanding the known clinical phenotype associated with pathogenic variants in COX4I1.
Subject(s)
Alleles , Intellectual Disability/genetics , Leigh Disease/genetics , Mutation/genetics , Seizures/genetics , Child , Child, Preschool , Electron Transport , Electron Transport Complex IV/genetics , Humans , Intellectual Disability/diagnostic imaging , Leigh Disease/diagnostic imaging , Male , Phenotype , Seizures/diagnostic imagingABSTRACT
Congenital heart defects involving left-sided lesions (LSLs) are relatively common birth defects with substantial morbidity and mortality. Previous studies have suggested a high heritability with a complex genetic architecture, such that only a few LSL loci have been identified. We performed a genome-wide case-control association study to address the role of common variants using a discovery cohort of 778 cases and 2756 controls. We identified a genome-wide significant association mapping to a 200 kb region on chromosome 20q11 [P= 1.72 × 10-8 for rs3746446; imputed Single Nucleotide Polymorphism (SNP) rs6088703 P= 3.01 × 10-9, odds ratio (OR)= 1.6 for both]. This result was supported by transmission disequilibrium analyses using a subset of 541 case families (lowest P in region= 4.51 × 10-5, OR= 1.5). Replication in a cohort of 367 LSL cases and 5159 controls showed nominal association (P= 0.03 for rs3746446) resulting in P= 9.49 × 10-9 for rs3746446 upon meta-analysis of the combined cohorts. In addition, a group of seven SNPs on chromosome 1q21.3 met threshold for suggestive association (lowest P= 9.35 × 10-7 for rs12045807). Both regions include genes involved in cardiac development-MYH7B/miR499A on chromosome 20 and CTSK, CTSS and ARNT on chromosome 1. Genome-wide heritability analysis using case-control genotyped SNPs suggested that the mean heritability of LSLs attributable to common variants is moderately high ([Formula: see text] range= 0.26-0.34) and consistent with previous assertions. These results provide evidence for the role of common variation in LSLs, proffer new genes as potential biological candidates, and give further insight to the complex genetic architecture of congenital heart disease.