Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935791

ABSTRACT

Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 [Formula: see text]: cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.

2.
Am J Respir Crit Care Med ; 208(8): 846-857, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37470492

ABSTRACT

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.


Subject(s)
Airway Obstruction , Fatty Acids, Omega-3 , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Longitudinal Studies , Lung , Pulmonary Disease, Chronic Obstructive/genetics , Docosahexaenoic Acids
3.
BMC Genomics ; 24(1): 556, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730558

ABSTRACT

BACKGROUND: Cocaine use (CU) is associated with psychiatric and medical diseases. Little is known about the mechanisms of CU-related comorbidities. Findings from preclinical and clinical studies have suggested that CU is associated with aberrant DNA methylation (DNAm) that may be influenced by genetic variants [i.e., methylation quantitative trait loci (meQTLs)]. In this study, we mapped cis-meQTLs for CU-associated DNAm sites (CpGs) in an HIV-positive cohort (Ntotal = 811) and extended the meQTLs to multiple traits. RESULTS: We conducted cis-meQTL analysis for 224 candidate CpGs selected for their association with CU in blood. We identified 7,101 significant meQTLs [false discovery rate (FDR) < 0.05], which mostly mapped to genes involved in immunological functions and were enriched in immune pathways. We followed up the meQTLs using phenome-wide association study and trait enrichment analyses, which revealed 9 significant traits. We tested for causal effects of CU on these 9 traits using Mendelian Randomization and found evidence that CU plays a causal role in increasing hypertension (p-value = 2.35E-08) and decreasing heel bone mineral density (p-value = 1.92E-19). CONCLUSIONS: These findings suggest that genetic variants for CU-associated DNAm have pleiotropic effects on other relevant traits and provide new insights into the causal relationships between cocaine use and these complex traits.


Subject(s)
Cocaine , HIV Infections , Humans , DNA Methylation , Phenotype , Phenomics , HIV Infections/genetics
4.
Mol Psychiatry ; 27(7): 3085-3094, 2022 07.
Article in English | MEDLINE | ID: mdl-35422469

ABSTRACT

Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.


Subject(s)
Behavior, Addictive , Cigarette Smoking , Behavior, Addictive/genetics , Chromatin , Ethanol , Genome-Wide Association Study , Phenotype
5.
Mol Psychiatry ; 27(4): 2158-2170, 2022 04.
Article in English | MEDLINE | ID: mdl-35301427

ABSTRACT

Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most severe outcome of opioid use disorder, remains the leading cause of accidental death in the United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicted case-control status with high accuracy. We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or "plexus": ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures genetic and environmental factors perpetuating the opioid epidemic.


Subject(s)
Opiate Overdose , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Epigenesis, Genetic/genetics , Humans , Machine Learning , Opioid-Related Disorders/drug therapy , United States
6.
Mol Psychiatry ; 27(11): 4633-4641, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36195638

ABSTRACT

Substance use disorders (SUDs) incur serious social and personal costs. The risk for SUDs is complex, with risk factors ranging from social conditions to individual genetic variation. We examined whether models that include a clinical/environmental risk index (CERI) and polygenic scores (PGS) are able to identify individuals at increased risk of SUD in young adulthood across four longitudinal cohorts for a combined sample of N = 15,134. Our analyses included participants of European (NEUR = 12,659) and African (NAFR = 2475) ancestries. SUD outcomes included: (1) alcohol dependence, (2) nicotine dependence; (3) drug dependence, and (4) any substance dependence. In the models containing the PGS and CERI, the CERI was associated with all three outcomes (ORs = 01.37-1.67). PGS for problematic alcohol use, externalizing, and smoking quantity were associated with alcohol dependence, drug dependence, and nicotine dependence, respectively (OR = 1.11-1.33). PGS for problematic alcohol use and externalizing were also associated with any substance dependence (ORs = 1.09-1.18). The full model explained 6-13% of the variance in SUDs. Those in the top 10% of CERI and PGS had relative risk ratios of 3.86-8.04 for each SUD relative to the bottom 90%. Overall, the combined measures of clinical, environmental, and genetic risk demonstrated modest ability to distinguish between affected and unaffected individuals in young adulthood. PGS were significant but added little in addition to the clinical/environmental risk index. Results from our analysis demonstrate there is still considerable work to be done before tools such as these are ready for clinical applications.


Subject(s)
Alcoholism , Substance-Related Disorders , Tobacco Use Disorder , Humans , Young Adult , Adult , Tobacco Use Disorder/genetics , Alcoholism/genetics , Substance-Related Disorders/genetics , Risk Factors , Alcohol Drinking
7.
Genet Epidemiol ; 44(7): 748-758, 2020 10.
Article in English | MEDLINE | ID: mdl-32803792

ABSTRACT

Smoking is a major contributor to lung cancer and chronic obstructive pulmonary disease (COPD). Two of the strongest genetic associations of smoking-related phenotypes are the chromosomal regions 15q25.1, encompassing the nicotinic acetylcholine receptor subunit genes CHRNA5-CHRNA3-CHRNB4, and 19q13.2, encompassing the nicotine metabolizing gene CYP2A6. In this study, we examined genetic relations between cigarettes smoked per day, smoking cessation, lung cancer, and COPD. Data consisted of genome-wide association study summary results. Genetic correlations were estimated using linkage disequilibrium score regression software. For each pair of outcomes, z-score-z-score (ZZ) plots were generated. Overall, heavier smoking and decreased smoking cessation showed positive genetic associations with increased lung cancer and COPD risk. The chromosomal region 19q13.2, however, showed a different correlational pattern. For example, the effect allele-C of the sentinel SNP (rs56113850) within CYP2A6 was associated with an increased risk of heavier smoking (z-score = 19.2; p = 1.10 × 10-81 ), lung cancer (z-score = 8.91; p = 5.02 × 10-19 ), and COPD (z-score = 4.04; p = 5.40 × 10-5 ). Surprisingly, this allele-C (rs56113850) was associated with increased smoking cessation (z-score = -8.17; p = 2.52 × 10-26 ). This inverse relationship highlights the need for additional investigation to determine how CYP2A6 variation could increase smoking cessation while also increasing the risk of lung cancer and COPD likely through increased cigarettes smoked per day.


Subject(s)
Lung Neoplasms/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Nicotinic/genetics , Smoking Cessation/statistics & numerical data , Smoking/genetics , Alleles , Cytochrome P-450 CYP2A6/genetics , Genome-Wide Association Study , Humans , Linkage Disequilibrium/genetics , Lung Neoplasms/etiology , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nicotine/metabolism , Polymorphism, Single Nucleotide/genetics , Pulmonary Disease, Chronic Obstructive/etiology , Risk Factors , Smoking Cessation/methods
8.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Article in English | MEDLINE | ID: mdl-30131587

ABSTRACT

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Adult , Brain , Female , Humans , Maternal Exposure , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Sequence Analysis, RNA , Smoking/adverse effects , Smoking/genetics , Transcriptome/genetics
9.
Mol Psychiatry ; 25(8): 1673-1687, 2020 08.
Article in English | MEDLINE | ID: mdl-32099098

ABSTRACT

To provide insights into the biology of opioid dependence (OD) and opioid use (i.e., exposure, OE), we completed a genome-wide analysis comparing 4503 OD cases, 4173 opioid-exposed controls, and 32,500 opioid-unexposed controls, including participants of European and African descent (EUR and AFR, respectively). Among the variants identified, rs9291211 was associated with OE (exposed vs. unexposed controls; EUR z = -5.39, p = 7.2 × 10-8). This variant regulates the transcriptomic profiles of SLC30A9 and BEND4 in multiple brain tissues and was previously associated with depression, alcohol consumption, and neuroticism. A phenome-wide scan of rs9291211 in the UK Biobank (N > 360,000) found association of this variant with propensity to use dietary supplements (p = 1.68 × 10-8). With respect to the same OE phenotype in the gene-based analysis, we identified SDCCAG8 (EUR + AFR z = 4.69, p = 10-6), which was previously associated with educational attainment, risk-taking behaviors, and schizophrenia. In addition, rs201123820 showed a genome-wide significant difference between OD cases and unexposed controls (AFR z = 5.55, p = 2.9 × 10-8) and a significant association with musculoskeletal disorders in the UK Biobank (p = 4.88 × 10-7). A polygenic risk score (PRS) based on a GWAS of risk-tolerance (n = 466,571) was positively associated with OD (OD vs. unexposed controls, p = 8.1 × 10-5; OD cases vs. exposed controls, p = 0.054) and OE (exposed vs. unexposed controls, p = 3.6 × 10-5). A PRS based on a GWAS of neuroticism (n = 390,278) was positively associated with OD (OD vs. unexposed controls, p = 3.2 × 10-5; OD vs. exposed controls, p = 0.002) but not with OE (p = 0.67). Our analyses highlight the difference between dependence and exposure and the importance of considering the definition of controls in studies of addiction.


Subject(s)
Analgesics, Opioid/administration & dosage , Behavior, Addictive/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genomics , Opioid-Related Disorders/genetics , Analgesics, Opioid/pharmacology , Female , Genome, Human/genetics , Humans , Male , Multifactorial Inheritance/genetics
10.
Nicotine Tob Res ; 23(12): 2110-2116, 2021 11 05.
Article in English | MEDLINE | ID: mdl-33991188

ABSTRACT

INTRODUCTION: The purpose of this study is to examine the predictive utility of polygenic risk scores (PRSs) for smoking behaviors. AIMS AND METHODS: Using summary statistics from the Sequencing Consortium of Alcohol and Nicotine use consortium, we generated PRSs of ever smoking, age of smoking initiation, cigarettes smoked per day, and smoking cessation for participants in the population-based Atherosclerosis Risk in Communities (ARIC) study (N = 8638), and the Collaborative Genetic Study of Nicotine Dependence (COGEND) (N = 1935). The outcomes were ever smoking, age of smoking initiation, heaviness of smoking, and smoking cessation. RESULTS: In the European ancestry cohorts, each PRS was significantly associated with the corresponding smoking behavior outcome. In the ARIC cohort, the PRS z-score for ever smoking predicted smoking (odds ratio [OR]: 1.37; 95% confidence interval [CI]: 1.31, 1.43); the PRS z-score for age of smoking initiation was associated with age of smoking initiation (OR: 0.87; 95% CI: 0.82, 0.92); the PRS z-score for cigarettes per day was associated with heavier smoking (OR: 1.17; 95% CI: 1.11, 1.25); and the PRS z-score for smoking cessation predicted successful cessation (OR: 1.24; 95% CI: 1.17, 1.32). In the African ancestry cohort, the PRSs did not predict smoking behaviors. CONCLUSIONS: Smoking-related PRSs were associated with smoking-related behaviors in European ancestry populations. This improvement in prediction is greatest in the lowest and highest genetic risk categories. The lack of prediction in African ancestry populations highlights the urgent need to increase diversity in research so that scientific advances can be applied to populations other than those of European ancestry. IMPLICATIONS: This study shows that including both genetic ancestry and PRSs in a single model increases the ability to predict smoking behaviors compared with the model including only demographic characteristics. This finding is observed for every smoking-related outcome. Even though adding genetics is more predictive, the demographics alone confer substantial and meaningful predictive power. However, with increasing work in PRSs, the predictive ability will continue to improve.


Subject(s)
Multifactorial Inheritance , Tobacco Use Disorder , Humans , Risk Factors , Smoking/epidemiology , Smoking/genetics , Tobacco Smoking
11.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 173-182, 2021 04.
Article in English | MEDLINE | ID: mdl-32803843

ABSTRACT

Cannabis use is highly prevalent and is associated with adverse and beneficial effects. To better understand the full spectrum of health consequences, biomarkers that accurately classify cannabis use are needed. DNA methylation (DNAm) is an excellent candidate, yet no blood-based epigenome-wide association studies (EWAS) in humans exist. We conducted an EWAS of lifetime cannabis use (ever vs. never) using blood-based DNAm data from a case-cohort study within Sister Study, a prospective cohort of women at risk of developing breast cancer (Discovery N = 1,730 [855 ever users]; Replication N = 853 [392 ever users]). We identified and replicated an association with lifetime cannabis use at cg15973234 (CEMIP): combined p = 3.3 × 10-8 . We found no overlap between published blood-based cis-meQTLs of cg15973234 and reported lifetime cannabis use-associated single nucleotide polymorphism (SNPs; p < .05), suggesting that the observed DNAm difference was driven by cannabis exposure. We also developed a multi-CpG classifier of lifetime cannabis use using penalized regression of top EWAS CpGs. The resulting 50-CpG classifier produced an area under the curve (AUC) = 0.74 (95% CI [0.72, 0.76], p = 2.00 × 10-5 ) in the discovery sample and AUC = 0.54 ([0.51, 0.57], p = 2.87 × 10-2 ) in the replication sample. Our EWAS findings provide evidence that blood-based DNAm is associated with lifetime cannabis use.


Subject(s)
Cannabis/chemistry , DNA Methylation , Epigenesis, Genetic , Epigenome , Genetic Markers , Genome-Wide Association Study , Substance-Related Disorders/genetics , Adult , Aged , Case-Control Studies , Female , Humans , Middle Aged , Polymorphism, Single Nucleotide , Prospective Studies , Substance-Related Disorders/blood , Substance-Related Disorders/pathology
12.
Nicotine Tob Res ; 22(6): 900-909, 2020 05 26.
Article in English | MEDLINE | ID: mdl-31294817

ABSTRACT

INTRODUCTION: FTND (FagerstrÓ§m test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS: Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS: We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS: Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS: Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.


Subject(s)
Cigarette Smoking/genetics , Genetic Markers , Genome, Human , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Tobacco Use Disorder/genetics , Cigarette Smoking/epidemiology , Cohort Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Meta-Analysis as Topic , Reelin Protein , Tobacco Use Disorder/epidemiology , United States/epidemiology
13.
Am J Respir Crit Care Med ; 199(5): 631-642, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30199657

ABSTRACT

RATIONALE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; ßSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; ßSNP×DHA interaction = 36.2 ml). CONCLUSIONS: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Fatty Acids, Omega-3/blood , Respiratory Physiological Phenomena/genetics , Aged , Biomarkers/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Unsaturated/blood , Female , Forced Expiratory Volume/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sex Factors , Smoking/adverse effects , Vital Capacity/genetics , alpha-Linolenic Acid/blood
15.
Br J Nutr ; 120(10): 1159-1170, 2018 11.
Article in English | MEDLINE | ID: mdl-30205856

ABSTRACT

The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)-pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D-pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1·1 ml in EA (95 % CI 0·9, 1·3; P<0·0001) and 1·8 ml (95 % CI 1·1, 2·5; P<0·0001) in AA (P race difference=0·06), and forced vital capacity (FVC) was higher by 1·3 ml in EA (95 % CI 1·0, 1·6; P<0·0001) and 1·5 ml (95 % CI 0·8, 2·3; P=0·0001) in AA (P race difference=0·56). Among EA, the 25(OH)D-FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1·7 ml (95 % CI 1·1, 2·3) for current smokers and 1·7 ml (95 % CI 1·2, 2·1) for former smokers, compared with 0·8 ml (95 % CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.


Subject(s)
Aging , Heart Diseases/genetics , Heart/physiology , Lung Diseases/genetics , Lung/physiology , Respiratory Function Tests , Vitamin D/blood , Adult , Aged , Black People , Cross-Sectional Studies , Female , Forced Expiratory Volume , Genome, Human , Heart Diseases/prevention & control , Humans , Lung Diseases/prevention & control , Male , Middle Aged , Molecular Epidemiology , Prospective Studies , Regression Analysis , Smoking , Vital Capacity , Vitamin D/analogs & derivatives , White People
16.
Nicotine Tob Res ; 20(4): 448-457, 2018 03 06.
Article in English | MEDLINE | ID: mdl-28520984

ABSTRACT

Introduction: Genetic variants associated with nicotine dependence have previously been identified, primarily in European-ancestry populations. No genome-wide association studies (GWAS) have been reported for smoking behaviors in Hispanics/Latinos in the United States and Latin America, who are of mixed ancestry with European, African, and American Indigenous components. Methods: We examined genetic associations with smoking behaviors in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (N = 12 741 with smoking data, 5119 ever-smokers), using ~2.3 million genotyped variants imputed to the 1000 Genomes Project phase 3. Mixed logistic regression models accounted for population structure, sampling, relatedness, sex, and age. Results: The known region of CHRNA5, which encodes the α5 cholinergic nicotinic receptor subunit, was associated with heavy smoking at genome-wide significance (p ≤ 5 × 10-8) in a comparison of 1929 ever-smokers reporting cigarettes per day (CPD) > 10 versus 3156 reporting CPD ≤ 10. The functional variant rs16969968 in CHRNA5 had a p value of 2.20 × 10-7 and odds ratio (OR) of 1.32 for the minor allele (A); its minor allele frequency was 0.22 overall and similar across Hispanic/Latino background groups (Central American = 0.17; South American = 0.19; Mexican = 0.18; Puerto Rican = 0.22; Cuban = 0.29; Dominican = 0.19). CHRNA4 on chromosome 20 attained p < 10-4, supporting prior findings in non-Hispanics. For nondaily smoking, which is prevalent in Hispanic/Latino smokers, compared to daily smoking, loci on chromosomes 2 and 4 achieved genome-wide significance; replication attempts were limited by small Hispanic/Latino sample sizes. Conclusions: Associations of nicotinic receptor gene variants with smoking, first reported in non-Hispanic European-ancestry populations, generalized to Hispanics/Latinos despite different patterns of smoking behavior. Implications: We conducted the first large-scale genome-wide association study (GWAS) of smoking behavior in a US Hispanic/Latino cohort, and the first GWAS of daily/nondaily smoking in any population. Results show that the region of the nicotinic receptor subunit gene CHRNA5, which in non-Hispanic European-ancestry smokers has been associated with heavy smoking as well as cessation and treatment efficacy, is also significantly associated with heavy smoking in this Hispanic/Latino cohort. The results are an important addition to understanding the impact of genetic variants in understudied Hispanic/Latino smokers.


Subject(s)
Genome-Wide Association Study/methods , Hispanic or Latino/genetics , Nerve Tissue Proteins/genetics , Public Health/methods , Receptors, Nicotinic/genetics , Smoking/epidemiology , Smoking/genetics , Adult , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , United States/epidemiology
17.
Curr Psychiatry Rep ; 20(2): 8, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29504045

ABSTRACT

PURPOSE OF REVIEW: With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10-8) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci. RECENT FINDINGS: Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., cerebellum). GWAS analyses have discovered several novel, replicable variants contributing to addiction. Using larger sample sizes from harmonized datasets and new approaches to integrate GWAS with multiple 'omics data across human brain tissues holds great promise to significantly advance our understanding of the biology underlying addiction.


Subject(s)
Alcohol Drinking/genetics , Behavior, Addictive/genetics , Smoking/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans
18.
Hum Mol Genet ; 24(20): 5940-54, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26220977

ABSTRACT

Nicotine dependence is influenced by chromosome 15q25.1 single nucleotide polymorphisms (SNPs), including the missense SNP rs16969968 that alters function of the α5 nicotinic acetylcholine receptor (CHRNA5) and noncoding SNPs that regulate CHRNA5 mRNA expression. We tested for cis-methylation quantitative trait loci (cis-meQTLs) using SNP genotypes and DNA methylation levels measured across the IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-CHRNB4 genes on chromosome 15q25.1 in the BrainCloud and Brain QTL cohorts [total N = 175 European-Americans and 65 African-Americans (AAs)]. We identified eight SNPs that were significantly associated with CHRNA5 methylation in prefrontal cortex: P ranging from 6.0 × 10(-10) to 5.6 × 10(-5). These SNP-methylation associations were also significant in frontal cortex, temporal cortex and pons: P ranging from 4.8 × 10(-12) to 3.4 × 10(-3). Of the eight cis-meQTL SNPs, only the intronic CHRNB4 SNP rs11636753 was associated with CHRNA5 methylation independently of the known SNP effects in prefrontal cortex, and it was the most significantly associated SNP with nicotine dependence across five independent cohorts (total N = 7858 European ancestry and 3238 AA participants): P = 6.7 × 10(-4), odds ratio (OR) [95% confidence interval (CI)] = 1.11 (1.05-1.18). The rs11636753 major allele (G) was associated with lower CHRNA5 DNA methylation, lower CHRNA5 mRNA expression and increased nicotine dependence risk. Haplotype analyses showed that rs11636753-G and the functional rs16969968-A alleles together increased risk of nicotine dependence more than each variant alone: P = 3.1 × 10(-12), OR (95% CI) = 1.32 (1.22-1.43). Our findings identify a novel regulatory SNP association with nicotine dependence and connect, for the first time, previously observed differences in CHRNA5 mRNA expression and nicotine dependence risk to underlying DNA methylation differences.


Subject(s)
Brain/metabolism , DNA Methylation , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Tobacco Use Disorder/genetics , Adolescent , Adult , Black or African American/genetics , Aged , Aged, 80 and over , Child , Child, Preschool , Chromosomes, Human, Pair 15 , Down-Regulation , Female , Genetic Association Studies , Haplotypes , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Quantitative Trait Loci , RNA, Messenger , Receptors, Nicotinic/metabolism , Risk , Tobacco Use Disorder/metabolism , White People/genetics , Young Adult
19.
Hum Mol Genet ; 24(23): 6836-48, 2015 12 01.
Article in English | MEDLINE | ID: mdl-26395457

ABSTRACT

Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.


Subject(s)
Airway Obstruction/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung/physiopathology , Polymorphism, Single Nucleotide , Airway Obstruction/physiopathology , Animals , Cell Proliferation , Genomics , Humans , Immune System , Male , Metabolic Networks and Pathways , Mice , Phenotype , Signal Transduction , White People/genetics
20.
Hum Genet ; 136(7): 911-919, 2017 07.
Article in English | MEDLINE | ID: mdl-28567521

ABSTRACT

Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10-8) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference = 1.28 × 10-6 vs. enhancers P TissueDifference = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.


Subject(s)
Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Anthropometry , Autoimmune Diseases/genetics , Cardiovascular Diseases/genetics , Diabetes Mellitus/genetics , Gene Frequency , Humans , Linkage Disequilibrium , Mental Disorders/genetics , Mutation, Missense , Neoplasms/genetics , Nervous System Diseases/genetics , Promoter Regions, Genetic , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL