Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Microbiol ; 25(2): 229-240, 2023 02.
Article in English | MEDLINE | ID: mdl-36482161

ABSTRACT

The importance of host-associated microorganisms and their biotic interactions for plant health and performance has been increasingly acknowledged. Protists, main predators and regulators of bacteria and fungi, are abundant and ubiquitous eukaryotes in terrestrial ecosystems. Protists are considered to benefit plant health and performance, but the community structure and functions of plant-associated protists remain surprisingly underexplored. Harnessing plant-associated protists and other microbes can potentially enhance plant health and productivity and sustain healthy food and agriculture systems. In this review, we summarize the knowledge of multifunctionality of protists and their interactions with other microbes in plant hosts, and propose a future framework to study plant-associated protists and utilize protists as agrifood tools for benefiting agricultural production.


Subject(s)
Ecosystem , Eukaryota , Plants , Fungi/genetics , Agriculture , Soil Microbiology
2.
Anal Chem ; 95(2): 650-658, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36577518

ABSTRACT

Surface-assisted laser desorption/ionization (SALDI) acts as a soft desorption/ionization technique, which has been widely recognized in small-molecule analysis owing to eliminating the requirement of the organic matrix. Herein, titania nanosheets (TiO2 NSs) were applied as novel substrates for simultaneous analysis and imaging of low-mass molecules and lipid species. A wide variety of representative analytes containing amino acids, bases, drugs, peptides, endogenous small molecules, and saccharide-spiked urine were examined by the TiO2 NS-assisted LDI mass spectrometry (MS). Compared with conventional organic matrices and substrates [Ag nanoparticles (NPs), Au NPs, carbon nanotubes, carbon NPs, CeO2 microparticles, and P25 TiO2], the TiO2 NS-assisted LDI MS method shows higher sensitivity and less spectral interference. Repeatability was evaluated with batch-to-batch relative standard deviations for 5-hydroxytryptophan, glucose-spiked urine, and glucose with addition of internal standard, which were 17.4, 14.9, and 2.8%, respectively. The TiO2 NS-assisted LDI MS method also allows the determination of blood glucose levels in mouse serum with a linear range of 0.5-10 mM. Owing to the nanoscale size and uniform deposition of the TiO2 NS matrix, spatial distributions of 16 endogenous small molecules and 16 lipid species from the horizontal section of the mouse brain tissue can be visualized at a 50 µm spatial resolution. These successful applications confirm that the TiO2-assisted LDI MS method has promising prospects in the field of life science.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , Animals , Mice , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Silver , Lipids
3.
Anal Chem ; 95(2): 1428-1435, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36584352

ABSTRACT

The determination of fluorine, the lightest element in halogens, suffers from high ionization potential and spectral interference from water molecules in mass spectrometry. Herein, we introduced a liquid nitrogen cooling unit into the laser ablation and ionization source for the first time to construct a cryogenic laser ablation and ionization time-of-flight mass spectrometry (Cryo-LAI-TOFMS) system. With this system, the interference of water-related species at m/z 19 was effectively eliminated, and fluorine atomization and ionization efficiency could reach 6.3%. A direct quantitative analysis method was developed to determine fluorine contents in phosphate rock, copper ore, industrial byproduct gypsum, stream sediment, and soil. Considering the simplicity, high sensitivity, and low spectral interference of this technique, it can be extended to the determination of fluorine content as low as µg/g in complex solid samples.


Subject(s)
Fluorine , Laser Therapy , Mass Spectrometry , Copper , Soil/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Appl Environ Microbiol ; 89(9): e0080723, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37671870

ABSTRACT

Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.


Subject(s)
Bacteria , Wetlands , Oxidation-Reduction , Nitrification , Ammonia , China , Archaea , Phylogeny
5.
J Org Chem ; 88(8): 5007-5014, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36126282

ABSTRACT

Cheap and available formate can be seen formally as a carbon dioxide radical anion (CO2•-) combined with a hydrogen atom, where the CO2•- is not only a highly active radical but also a very powerful reductant. In this paper, we successfully realized a visible-light-driven carboxylation of benzyl bromides with carbon dioxide to prepare high-value arylacetic acids using potassium formate as a terminal reductant. This reaction is characterized by mild reaction conditions and a wide range of substrates. Moreover, under nitrogen atmosphere, the reaction can also achieve the carboxylation of benzyl bromides utilizing an excess of potassium formate. Mechanistic experiments indicate this carboxylation proceeded through CO2•-, which was generated from the oxidation of 1,4-diazabicyclo[2.2.2]octane with excited photosensitizer Ir(ppy)2(dtbbpy)PF6 in the presence of the potassium formate.

6.
Microb Ecol ; 85(1): 209-220, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35034141

ABSTRACT

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.


Subject(s)
Nitrification , Wetlands , Oxidation-Reduction , Bacteria , Ammonia , Soil/chemistry , Poaceae
7.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36372840

ABSTRACT

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Subject(s)
Mycobiome , Wetlands , Introduced Species , Plants , Poaceae/physiology , Soil/chemistry , Fungi/genetics , Soil Microbiology , China
8.
Nanotechnology ; 35(4)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37871595

ABSTRACT

A simple hydrothermal method based on an orthogonal experimental design was used to synthesis Pt-loaded TiO2mesoporous nanoparticles in one step. The successful synthesis of Pt-loaded TiO2nanoparticles was demonstrated by various characterization methods. The effects of the modification of Pt and its explanation are described in detail by means of the test results. Through systematic gas-sensing tests, we found that the Pt-loaded TiO2nanoparticles outperform pure TiO2nanoparticles, with a high response value (S= 42.5) to 200 ppm acetone at 260 °C and with a film thickness of 0.45 mm, far superior to that of pure TiO2. The response time (8 s) and recovery time (11 s) of the material are also relatively good with excellent selectivity and long-term stability (30 days). The frequent use of acetone as an organic solution in factories and laboratories, as well as the possibility of making a preliminary diagnosis of diabetes by detecting acetone levels in exhaled gas, make this work promising for environmental monitoring and medical diagnosis.

9.
ORL J Otorhinolaryngol Relat Spec ; 85(3): 128-140, 2023.
Article in English | MEDLINE | ID: mdl-37019094

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory disease in otolaryngology, mainly manifested as nasal congestion, nasal discharge, facial pain/pressure, and smell disorder. CRS with nasal polyps (CRSwNP), an important phenotype of CRS, has a high recurrence rate even after receiving corticosteroids and/or functional endoscopic sinus surgery. In recent years, clinicians have focused on the application of biological agents in CRSwNP. However, it has not reached a consensus on the timing and selection of biologics for the treatment of CRS so far. SUMMARY: We reviewed the previous studies of biologics in CRS and summarized the indications, contraindications, efficacy assessment, prognosis, and adverse effects of biologics. Also, we evaluated the treatment response and adverse reactions of dupilumab, omalizumab, and mepolizumab in the management of CRS and made recommendations. KEY MESSAGES: Dupilumab, omalizumab, and mepolizumab have been approved for the treatment of CRSwNP by the US Food and Drug Administration. Type 2 and eosinophilic inflammation, need for systemic steroids or contraindication to systemic steroids, significantly impaired quality of life, anosmia, and comorbid asthma are required for the use of biologics. Based on current evidence, dupilumab has the prominent advantage in improving quality of life and reducing the risk of comorbid asthma in CRSwNP among the approved monoclonal antibodies. Most patients tolerate biological agents well in general with few major or severe adverse effects. Biologics have provided more options for severe uncontrolled CRSwNP patients or patients who refuse to have surgery. In the future, more novel biologics will be assessed in high-quality clinical trials and applied clinically.


Subject(s)
Asthma , Biological Products , Nasal Polyps , Rhinitis , Sinusitis , Humans , Asthma/drug therapy , Biological Products/therapeutic use , Chronic Disease , Consensus , Nasal Polyps/complications , Nasal Polyps/drug therapy , Omalizumab/therapeutic use , Quality of Life , Rhinitis/complications , Rhinitis/drug therapy , Sinusitis/complications , Sinusitis/drug therapy , Steroids/therapeutic use
10.
Environ Microbiol ; 24(11): 5574-5582, 2022 11.
Article in English | MEDLINE | ID: mdl-36070190

ABSTRACT

Despite the importance of soil bacterial and fungal communities for ecosystem services and human welfare, how their ecological networks respond to climatic aridity have yet been evaluated. Here, we collected soil samples from 47 sites across 2500 km in coastal and inland areas of eastern Australia with contrasting status of aridity. We found that the diversity of both bacteria and fungi significantly differed between inland and coastal soils. Despite the significant differences in soil nutrient availability and stoichiometry between the inland and coastal regions, aridity was the most important predictor of bacterial and fungal community compositions. Aridity has altered the potential microbial migration rates and further impacted the microbial assembly processes by increasing the importance of stochasticity in bacterial and fungal communities. More importantly, ecological network analysis indicated that aridity enhanced the complexity and stability of the bacterial network but reduced that of the fungal network, possibly due to the contrasting impacts of aridity on the community-level habitat niche breadth and overlaps. Our work paves the way towards a more comprehensive understanding of how climate changes will alter soil microbial communities, which is integral to predicting their long-term consequences for ecosystem sustainability and resilience to future disturbances.


Subject(s)
Microbiota , Soil , Humans , Soil Microbiology , Ecosystem , Fungi/genetics , Bacteria/genetics
11.
Acta Pharmacol Sin ; 43(10): 2550-2561, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35217815

ABSTRACT

Latest clinical research shows that trimetazidine therapy during the perioperative period relieves endothelial dysfunction in patients with unstable angina induced by percutaneous coronary intervention. In this study we investigated the effects of TMZ on myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery. TAC mice were administered trimetazidine (2.8 mg/100 µL, i.g.) for 28 consecutive days. We showed that trimetazidine administration significantly increased blood vessel density in the left ventricular myocardium and abrogated cardiac dysfunction in TAC mice. Co-administration of a specific HSF1 inhibitor KRIBB11 (1.25 mg/100 µL, i.h.) abrogated the angiogenesis-promoting effects of trimetazidine in TAC mice. Using luciferase reporter and electrophoretic mobility shift assays we demonstrated that the transcription factor HSF1 bound to the promoter region of VEGF-A, and the transcriptional activity of HSF1 was enhanced upon trimetazidine treatment. In molecular docking analysis we found that trimetazidine directly bound to Akt via a hydrogen bond with Asp292 and a pi-pi bond with Trp80. In norepinephrine-treated HUVECs, we showed that trimetazidine significantly increased the phosphorylation of Akt and the synergistic nuclear translocation of Akt and HSF1, as well as the binding of Akt and HSF1 in the nucleus. These results suggest that trimetazidine enhances myocardial angiogenesis through a direct interaction with Akt and promotion of nuclear translocation of HSF1, and that trimetazidine may be used for the treatment of myocardial angiogenic disorders in hypertensive patients.


Subject(s)
Trimetazidine , Animals , Mice , Angiogenesis Inducing Agents/pharmacology , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Heat Shock Transcription Factors/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Myocardium/metabolism , Myocytes, Cardiac , Neovascularization, Pathologic/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Trimetazidine/metabolism , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
Metab Brain Dis ; 37(5): 1435-1450, 2022 06.
Article in English | MEDLINE | ID: mdl-35488941

ABSTRACT

Wuzi Yanzong Pill (WYP) was found to play a protective role on nerve cells and neurological diseases, however the molecular mechanism is unclear. To understand the molecular mechanisms that underly the neuroprotective effect of WYP on dopaminergic neurons in Parkinson's disease (PD). PD mouse model was induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Gait and hanging tests were used to assess motor behavioral function. Immunofluorescence assay was used to determine TH-positive neurons in substantia nigra (SN). Apoptosis, dopamine and neurotrophic factors as well as expression of PI3K/Akt pathway were detected by TUNEL staining, ELISA and western blotting, respectively. First, it was observed that WYP intervention improved abnormal motor function in MPTP-induced PD model, alleviated the loss of TH+ neurons in SN, and increased dopamine content in brain, revealing a potential protective effect. Second, network pharmacology was used to analyze the possible targets and pathways of WYP action in the treatment of PD. A total of 126 active components related to PD were screened in WYP, and the related core targets included ALB, GAPDH, Akt1, TP53, IL6 and TNF. Particularly, the effect of WYP on PD may be medicate through PI3K/Akt signaling pathway and apoptotic regulation. The WYP treated PD mice had higher expression of p-PI3K, p-Akt and Bcl-2 but lower expression of Bax and cleaved caspase-3 than the non-WYP treated PD mice. Secretion of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) were also increased in the treated mice. WYP may inhibit apoptosis and increase the secretion of neurotrophic factor via activating PI3K/ Akt signaling pathway, thus protecting the loss of dopamine neurons in MPTP-induced PD mice.


Subject(s)
Neuroprotective Agents , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons , Drugs, Chinese Herbal/therapeutic use , Mice , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Parkinson Disease, Secondary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Substantia Nigra
13.
J Environ Manage ; 316: 115264, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35569359

ABSTRACT

Total solid content (TS) is an important factor for biogas production during anaerobic digestion. In this study, we explored the influence of different TS (5% wet, 15% semi-solid and 25% solid state) on the relative cumulative methane production (RCMP) during anaerobic co-digestion of chicken manure with corn straw. Results showed that total ammonium nitrogen and free ammonia nitrogen concentration increased with the increase of TS. Ammonium nitrogen in treatments at 15% TS was 2.25-2.76 times as high as that at 5% TS, which was below 3 times. The highest chemical oxygen demand removal and RCMP were obtained in the treatment of 15% TS with a ratio of 2:1 chicken manure: corn straw (based on TS). The RCMP in the treatments of 15% TS were 3.63-4.59 times higher than that of 5% TS based on the volume of substrates. The abundance of Caldicoprobacter improving the degradation of corn straw was significantly positively correlated with the RCMP, and the average abundance of Caldicoprobacter at 15% TS was 8.33 and 7.02 times higher than that at 5% and 25% TS, respectively. Structural equation models analysis suggested that TS significantly impacted the RCMP by indirectly impacting free ammonia nitrogen and microbial abundance. These findings indicated semi-solid state (15% TS) decreased ammonia nitrogen releasing and improved the abundance of Caldicoprobacter, and increased RCMP during anaerobic co-digestion of chicken manure with corn straw.


Subject(s)
Ammonium Compounds , Manure , Ammonia/analysis , Anaerobiosis , Animals , Biofuels/analysis , Bioreactors , Chickens/metabolism , Digestion , Manure/analysis , Methane/analysis , Nitrogen/analysis , Zea mays/metabolism
14.
J Am Chem Soc ; 143(51): 21648-21656, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34913337

ABSTRACT

Exploring the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution with mass spectrometry imaging (MSI) techniques is crucial in cellular biology, yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. Herein, a microlensed fiber laser desorption post-ionization time-of-flight mass spectrometer (MLF-LDPI-TOFMS) was developed for the 3D imaging of two anticancer drugs within single cells at a 500 × 500 × 500 nm3 voxel resolution. Nanoscale desorption was obtained with a microlensed fiber (MLF), and a 157 nm post-ionization laser was introduced to enhance the ionization yield. Furthermore, a new type of alignment method for 3D reconstruction was developed on the basis of our embedded uniform circular polystyrene microspheres (PMs). Our findings demonstrate that this 3D imaging technique has the potential to provide information about the 3D distributions of specific molecules at the nanoscale level.


Subject(s)
Imaging, Three-Dimensional/methods , Nanotechnology , Single-Cell Analysis/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antineoplastic Agents/chemistry , HeLa Cells , Humans , Methylene Blue/chemistry , Microspheres , Polystyrenes , Proflavine/chemistry
15.
Environ Microbiol ; 23(4): 2169-2183, 2021 04.
Article in English | MEDLINE | ID: mdl-33400366

ABSTRACT

Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant-soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.


Subject(s)
Microbiota , Parasites , Animals , Fertilization , Rhizosphere , Soil , Soil Microbiology
16.
Environ Microbiol ; 23(12): 7661-7670, 2021 12.
Article in English | MEDLINE | ID: mdl-34097804

ABSTRACT

Termites are pivotal ecosystem engineers in tropical and subtropical habitats, where they construct massive nests ('mounds') that substantially modify soil properties and promote nutrient cycling. Yet, little is known about the roles of termite nesting activity in regulating the spread of antimicrobial resistance (AMR), one of the major Global Health challenges. Here, we conducted a large-scale (> 1500 km) investigation in northern Australia and found distinct resistome profiles in termite mounds and bulk soils. By profiling a wide spectrum of ARGs, we found that the abundance and diversity of antibiotic resistance genes (ARGs) were significantly lower in termite mounds than in bulk soils (P < 0.001). The proportion of efflux pump ARGs was significantly lower in termite mound resistome than in bulk soil resistome (P < 0.001). The differences in resistome profiles between termite mounds and bulk soils may result from the changes in microbial interactions owing to the substantial increase in pH and nutrient availability induced by termite nesting activities. These findings advance our understanding of the profile of ARGs in termite mounds, which is a crucial step to evaluate the roles of soil faunal activity in regulating soil resistome under global environmental change.


Subject(s)
Isoptera , Animals , Australia , Ecosystem , Isoptera/genetics , Soil , Soil Microbiology
17.
Environ Microbiol ; 23(12): 7688-7700, 2021 12.
Article in English | MEDLINE | ID: mdl-34407308

ABSTRACT

Understanding the current and future distributions of plant pathogens is critical to predict the plant performance and related economic benefits in the changing environment. Yet, little is known about the roles of environmental drivers in shaping the profiles of fungal plant pathogens in phyllosphere, an important habitat of microbiomes on Earth. Here, using a large-scale investigation of Eucalyptus phyllospheric microbiomes in Australia and the multiple linear regression model, we show that precipitation is the most important predictor of fungal taxonomic diversity and abundance. The abundance of fungal plant pathogens in phyllosphere exhibited a positive linear relationship with precipitation. With this empirical dataset, we constructed current and future atlases of phyllosphere plant pathogens to estimate their spatial distributions under different climate change scenarios. Our atlases indicate that the abundance of fungal plant pathogens would increase especially in the coastal regions with up to 100-fold increase compared with the current abundance. These findings advance our understanding of the distributions of fungal plant pathogens in phyllospheric microbiomes under the climate change, which can improve our ability to predict and mitigate their impacts on plant productivity and economic losses.


Subject(s)
Eucalyptus , Microbiota , Climate Change , Fungi/genetics , Plants
18.
Environ Microbiol ; 23(5): 2659-2668, 2021 05.
Article in English | MEDLINE | ID: mdl-33817921

ABSTRACT

Termites are ubiquitous insects in tropical and subtropical habitats, and some of them construct massive nests ('mounds'), which substantially promote substrate heterogeneity by altering soil properties. Yet, the role of termite nesting process in regulating the distribution and diversity of soil microbial communities remains poorly understood, which introduces uncertainty in predictions of ecosystem functions of termite mounds in a changing environment. Here, by using amplicon sequencing, we conducted a survey of 134 termite mounds across >1500 km in northern Australia and found that termite mounds significantly differed from bulk soils in the microbial diversity and community compositions. Compared with bulk soils, termite nesting process decreased the microbial diversity and the relative abundance of rare taxa. Rare taxa had a narrower habitat niche breadth than dominant taxa and might be easier to be filtered by the potential intensive microbial competition during the nesting processes. We further demonstrated that the shift in pH induced by termite nesting process was a major driver shaping the microbial community profiles in termite mounds. Together, our work provides novel evidence that termite nesting is an important process in regulating soil microbial diversity, which advances our understanding of the functioning of termite mounds.


Subject(s)
Isoptera , Microbiota , Animals , Insecta , Microbiota/genetics , Soil , Soil Microbiology
19.
BMC Plant Biol ; 21(1): 20, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407140

ABSTRACT

BACKGROUND: Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. RESULTS: Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. CONCLUSIONS: Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


Subject(s)
Chlorophyceae/enzymology , Chlorophyceae/genetics , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Genes, Plant , Triglycerides/biosynthesis , Triglycerides/genetics , Gene Expression Regulation, Plant
20.
New Phytol ; 231(3): 1183-1194, 2021 08.
Article in English | MEDLINE | ID: mdl-33982802

ABSTRACT

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. Understanding the mechanisms underlying community assembly is essential for predicting compositional responses to changing environments. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between 12 natural forests and related these to environmental variation within and among sites. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the 12 forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate climatic zones. Soil fungal ß-diversity patterns between forests were also greater when comparing forests exhibiting high environmental heterogeneity. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, the differences among fungal communities in soils within forests was high even at local scales.


Subject(s)
Ecosystem , Mycobiome , Biodiversity , Forests , Fungi , Soil , Soil Microbiology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL