Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 105(5): 974-986, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31668702

ABSTRACT

The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Databases, Genetic , Exome/genetics , Genomics/methods , Humans , Pedigree , Phenotype , Exome Sequencing/methods
2.
Mol Psychiatry ; 26(5): 1706-1718, 2021 05.
Article in English | MEDLINE | ID: mdl-33597717

ABSTRACT

Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.


Subject(s)
DNA Copy Number Variations , Adolescent , DNA Copy Number Variations/genetics , Humans , Male , Mutation/genetics , Phenotype , Exome Sequencing
3.
Hum Mutat ; 42(5): 577-591, 2021 05.
Article in English | MEDLINE | ID: mdl-33644933

ABSTRACT

Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Alleles , DNA-Binding Proteins/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Phenotype , Syndrome
4.
Hum Mutat ; 41(12): 2094-2104, 2020 12.
Article in English | MEDLINE | ID: mdl-32935419

ABSTRACT

KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus.


Subject(s)
Genes, Dominant , Genetic Predisposition to Disease , Kinesins/genetics , Mutation/genetics , Child , Child, Preschool , Family , Female , Humans , Male , Pedigree , Peru , Phenotype
5.
HGG Adv ; 2(4)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34950897

ABSTRACT

Xia-Gibbs syndrome (XGS; MIM: 615829) is a phenotypically heterogeneous neurodevelopmental disorder (NDD) caused by newly arising mutations in the AT-Hook DNA-Binding Motif-Containing 1 (AHDC1) gene that are predicted to lead to truncated AHDC1 protein synthesis. More than 270 individuals have been diagnosed with XGS worldwide. Despite the absence of an independent assay for AHDC1 protein function to corroborate potential functional consequences of rare variant genetic findings, there are also reports of individuals with XGS-like trait manifestations who have de novo missense AHDC1 mutations and who have been provided a molecular diagnosis of the disorder. To investigate a potential contribution of missense mutations to XGS, we mapped the missense mutations from 10 such individuals to the AHDC1 conserved protein domain structure and detailed the observed phenotypes. Five newly identified individuals were ascertained from a local XGS Registry, and an additional five were taken from external reports or databases, including one publication. Where clinical data were available, individuals with missense mutations all displayed phenotypes consistent with those observed in individuals with AHDC1 truncating mutations, including delayed motor milestones, intellectual disability (ID), hypotonia, and speech delay. A subset of the 10 reported missense mutations cluster in two regions of the AHDC1 protein with known conserved domains, likely representing functional motifs. Variants outside the clustered regions score lower for computational prediction of their likely damaging effects. Overall, de novo missense variants in AHDC1 are likely diagnostic of XGS when in silico analysis of their position relative to conserved regions is considered together with disease trait manifestations.

6.
HGG Adv ; 2(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33665635

ABSTRACT

De novo germline variation in POLR2A was recently reported to associate with a neurodevelopmental disorder. We report twelve individuals harboring putatively pathogenic de novo or inherited variants in POLR2A, detail their phenotypes, and map all known variants to the domain structure of POLR2A and crystal structure of RNA polymerase II. Affected individuals were ascertained from a local data lake, pediatric genetics clinic, and an online community of families of affected individuals. These include six affected by de novo missense variants (including one previously reported individual), four clinical laboratory samples affected by missense variation with unknown inheritance-with yeast functional assays further supporting altered function-one affected by a de novo in-frame deletion, and one affected by a C-terminal frameshift variant inherited from a largely asymptomatic mother. Recurrently observed phenotypes include ataxia, joint hypermobility, short stature, skin abnormalities, congenital cardiac abnormalities, immune system abnormalities, hip dysplasia, and short Achilles tendons. We report a significantly higher occurrence of epilepsy (8/12, 66.7%) than previously reported (3/15, 20%) (p value = 0.014196; chi-square test) and a lower occurrence of hypotonia (8/12, 66.7%) than previously reported (14/15, 93.3%) (p value = 0.076309). POLR2A-related developmental disorders likely represent a spectrum of related, multi-systemic developmental disorders, driven by distinct mechanisms, converging at a single locus.

7.
Ann Clin Transl Neurol ; 5(10): 1277-1285, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30349862

ABSTRACT

De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders.

SELECTION OF CITATIONS
SEARCH DETAIL