Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 23(8): e54315, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35695071

ABSTRACT

The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.


Subject(s)
Cysts , Polycystic Kidney Diseases , Cilia/metabolism , Cysts/metabolism , Gene Expression , Humans , Kidney , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism
2.
BMC Biol ; 21(1): 21, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737754

ABSTRACT

BACKGROUND: In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS: We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS: We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.


Subject(s)
Immunoglobulin Light Chains , Multiple Myeloma , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Amyloid/metabolism , Amino Acid Sequence , Proteolysis
3.
Catheter Cardiovasc Interv ; 101(6): 1098-1107, 2023 05.
Article in English | MEDLINE | ID: mdl-37002948

ABSTRACT

BACKGROUND: The superior sinus venosus atrial septal defect is a congenital communication between the left and right atria. Open surgical approach by patch closure has historically been the only treatment option. Recently, a transcatheter approach has been developed. This study aims to compare the efficacy and safety of surgical and transcatheter approach in treatment of sinus venosus atrial septal defect. METHODS: Between March 2010 and December 2020, 58 patients (median age: 45.4, range 14.8-73.8) underwent either surgical or transcatheter correction of superior sinus venosus atrial septal defect with partial anomalous pulmonary venous drainage. RESULTS: Twenty-four patients (median age: 35.4, range 14.8-66.8) underwent surgery while 34 patients (median age: 46.8, range 15.5-73.8) had a transcatheter treatment. During the catheterization era, 41 patients was considered suitable for a transcatheter closure. In 5 patients, surgery was the patient's or referring physician's choice. In 2 cases, the procedure was unsuccessful; the remaining 34 were successfully closed (94.4% of cases). Intensive care unit stay (median of 1 day, range 0.5-4, vs. 0, range 0-2, p < 0.0001) and hospital stay (median 7 days, range 2-15 vs. 2 days, range 1-12, p < 0.0001), were significantly longer in the surgery group. Total early complication rate, consisted on procedural and in-hospital complication, were higher in the surgical group (62.5% vs. 23.5%; p = 0.005). However, complications in both groups were clinically mild. At follow-up, a small residual shunt was present in 6 patients (surgery group: 2 pts; catheterization group: 4 pts; p: NS). Imaging studies showed significant improvement of right ventricular size and unobstructed pulmonary venous return in all patients. No late complications occurred at follow-up. CONCLUSIONS: Transcatheter correction of sinus venosus atrial septal defect is effective and safe in selected patients and may be considered as a valid alternative to surgery.


Subject(s)
Atrial Appendage , Heart Septal Defects, Atrial , Humans , Middle Aged , Adult , Treatment Outcome , Heart Atria , Heart Septal Defects, Atrial/diagnostic imaging , Heart Septal Defects, Atrial/therapy
4.
Phys Chem Chem Phys ; 25(4): 3031-3041, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36607608

ABSTRACT

Liquid-liquid phase separation (LLPS) of protein solutions is governed by highly complex protein-protein interactions. Nevertheless, it has been suggested that based on the extended law of corresponding states (ELCS), as proposed for colloids with short-range attractions, one can rationalize not only the thermodynamics, but also the structure and dynamics of such systems. This claim is systematically and comprehensively tested here by static and dynamic light scattering experiments. Spinodal lines, the isothermal osmotic compressibility κT and the relaxation rate of concentration fluctuations Γ are determined for protein solutions in the vicinity of LLPS. All these quantities are found to exhibit a corresponding-states behavior. This means that, for different solution conditions, these quantities are essentially the same if considered at similar reduced temperature or second virial coefficient. For moderately concentrated solutions, the volume fraction ϕ dependence of κT and Γ can be consistently described by Baxter's model of adhesive hard spheres. The off-critical, asymptotic T behavior of κT and Γ close to LLPS is consistent with the scaling laws predicted by mean-field theory. Thus, the present work aims at a comprehensive experimental test of the applicability of the ELCS to structural and dynamical properties of concentrated protein solutions.


Subject(s)
Colloids , Proteins , Temperature , Thermodynamics , Proteins/chemistry , Dynamic Light Scattering , Solutions/chemistry
5.
J Chem Phys ; 158(2): 024904, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36641409

ABSTRACT

The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.


Subject(s)
Models, Biological , Proteins , Gels , Osmolar Concentration , Static Electricity , Solutions
6.
PLoS Genet ; 16(8): e1008954, 2020 08.
Article in English | MEDLINE | ID: mdl-32785227

ABSTRACT

The flagellum is essential for sperm motility and fertilization in vivo. The axoneme is the main component of the flagella, extending through its entire length. An axoneme is comprised of two central microtubules surrounded by nine doublets, the nexin-dynein regulatory complex, radial spokes, and dynein arms. Failure to properly assemble components of the axoneme in a sperm flagellum, leads to fertility alterations. To understand this process in detail, we have defined the function of an uncharacterized gene, Cfap97 domain containing 1 (Cfap97d1). This gene is evolutionarily conserved in mammals and multiple other species, including Chlamydomonas. We have used two independently generated Cfap97d1 knockout mouse models to study the gene function in vivo. Cfap97d1 is exclusively expressed in testes starting from post-natal day 20 and continuing throughout adulthood. Deletion of the Cfap97d1 gene in both mouse models leads to sperm motility defects (asthenozoospermia) and male subfertility. In vitro fertilization (IVF) of cumulus-intact oocytes with Cfap97d1 deficient sperm yielded few embryos whereas IVF with zona pellucida-free oocytes resulted in embryo numbers comparable to that of the control. Knockout spermatozoa showed abnormal motility characterized by frequent stalling in the anti-hook position. Uniquely, Cfap97d1 loss caused a phenotype associated with axonemal doublet heterogeneity linked with frequent loss of the fourth doublet in the sperm stored in the epididymis. This study demonstrates that Cfap97d1 is required for sperm flagellum ultra-structure maintenance, thereby playing a critical role in sperm function and male fertility in mice.


Subject(s)
Axoneme/genetics , Cytoskeletal Proteins/genetics , Dyneins/genetics , Infertility, Male/genetics , Animals , Chlamydomonas/genetics , Cilia/genetics , Cilia/pathology , Fertilization in Vitro , Humans , Infertility, Male/pathology , Male , Mice , Mice, Knockout , Sperm Motility/genetics , Sperm Tail/metabolism , Sperm Tail/pathology , Spermatozoa/growth & development , Spermatozoa/pathology , Testis/growth & development , Testis/pathology
7.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139185

ABSTRACT

Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is the roll out of transcatheter tissue engineered pulmonary valve replacement to more patients. In the present study, biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds in the form of a 3D leaflet matrix were successfully seeded with human endothelial colony-forming cells (ECFCs), human induced pluripotent stem cell-derived MSCs (hMSCs), and porcine MSCs (pMSCs) for three weeks for the generation of 3D tissue-engineered tri-leaflet valved stent grafts. The cell adhesion, proliferation, and distribution of these 3D heart leaflets was analyzed using fluorescence microscopy and scanning electron microscopy (SEM). All cell lineages were able to increase the overgrown leaflet area within the three-week timeframe. While hMSCs showed a consistent growth rate over the course of three weeks, ECFSs showed almost no increase between days 7 and 14 until a growth spurt appeared between days 14 and 21. More than 90% of heart valve leaflets were covered with cells after the full three-week culturing cycle in nearly all leaflet areas, regardless of which cell type was used. This study shows that seeded biodegradable PCL nanofiber scaffolds incorporated in nitinol or biodegradable stents will offer a new therapeutic option in the future.


Subject(s)
Induced Pluripotent Stem Cells , Polyesters , Humans , Animals , Swine , Polyesters/pharmacology , Tissue Engineering , Tissue Scaffolds , Stents
8.
Glia ; 70(1): 71-88, 2022 01.
Article in English | MEDLINE | ID: mdl-34499767

ABSTRACT

The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.


Subject(s)
Microglia , Toll-Like Receptors , Macrophage Activation , Microglia/metabolism , Receptors, Cannabinoid/metabolism , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
9.
FASEB J ; 35(6): e21611, 2021 06.
Article in English | MEDLINE | ID: mdl-33977623

ABSTRACT

Circadian misalignment, as seen in shift work, is associated with an increased risk to develop type 2 diabetes. In an experimental setting, we recently showed that a rapid day-night shift for 3 consecutive nights leads to misalignment of the core molecular clock, induction of the PPAR pathway, and insulin resistance in skeletal muscle of young, healthy men. Here, we investigated if circadian misalignment affects the skeletal muscle lipidome and intramyocellular lipid droplet characteristics, explaining the misalignment-induced insulin resistance. Fourteen healthy men underwent one aligned and one circadian misalignment period, both consisting of ~3.5 days. In the misaligned condition, day and night were rapidly shifted by 12 hours leading to opposite eating, sleep, and activity times compared with the aligned condition. For each condition, two muscle biopsies were taken from the m. vastus lateralis in the morning and evening and subjected to semi-targeted lipidomics and confocal microscopy analysis. We found that only 2% of detected lipids were different between morning and evening in the aligned condition, whereas 12% displayed a morning-evening difference upon misalignment. Triacylglycerols, in particular species of a carbon length ≥55, were the most abundant lipid species changed upon misalignment. Cardiolipins were decreased upon misalignment, whereas phosphatidylcholines consistently followed the same morning-evening pattern, suggesting regulation by the circadian clock. Cholesteryl esters adjusted to the shifted behavior. Lipid droplet characteristics remained unaltered upon misalignment. Together, these findings show that simulated shift work disturbs the skeletal muscle lipidome, which may contribute to misalignment-induced insulin resistance.


Subject(s)
Circadian Rhythm , Lipidomics/methods , Lipids/analysis , Muscle, Skeletal/pathology , Adult , Humans , Male , Muscle, Skeletal/metabolism , Young Adult
10.
J Chem Phys ; 156(24): 244903, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35778071

ABSTRACT

Intermolecular interactions in protein solutions, in general, contain many contributions. If short-range attractions dominate, the state diagram exhibits liquid-liquid phase separation (LLPS) that is metastable with respect to crystallization. In this case, the extended law of corresponding states (ELCS) suggests that thermodynamic properties are insensitive to details of the underlying interaction potential. Using lysozyme solutions, we investigate the applicability of the ELCS to the static structure factor and how far effective colloidal interaction models can help to rationalize the phase behavior and interactions of protein solutions in the vicinity of the LLPS binodal. The (effective) structure factor has been determined by small-angle x-ray scattering. It can be described by Baxter's adhesive hard-sphere model, which implies a single fit parameter from which the normalized second virial coefficient b2 is inferred and found to quantitatively agree with previous results from static light scattering. The b2 values are independent of protein concentration but systematically vary with temperature and solution composition, i.e., salt and additive content. If plotted as a function of temperature normalized by the critical temperature, the values of b2 follow a universal behavior. These findings validate the applicability of the ELCS to globular protein solutions and indicate that the ELCS can also be reflected in the structure factor.


Subject(s)
Proteins , Crystallization , Proteins/chemistry , Solutions/chemistry , Temperature , Thermodynamics
11.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054905

ABSTRACT

Patients with the complex congenital heart disease (CHD) are usually associated with right ventricular outflow tract dysfunction and typically require multiple surgical interventions during their lives to relieve the right ventricular outflow tract abnormality. Transcatheter pulmonary valve replacement was used as a non-surgical, less invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly developing over the past years. Despite the current favorable results of transcatheter pulmonary valve replacement, many patients eligible for pulmonary valve replacement are still not candidates for transcatheter pulmonary valve replacement. Therefore, one of the significant future challenges is to expand transcatheter pulmonary valve replacement to a broader patient population. This review describes the limitations and problems of existing techniques and focuses on decellularized tissue engineering for pulmonary valve stenting.


Subject(s)
Heart Valve Prosthesis Implantation/methods , Pulmonary Valve/surgery , Stents , Tissue Engineering , Animals , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/standards , Heart Ventricles/physiopathology , Humans , Prognosis , Tissue Engineering/methods , Treatment Outcome , Ventricular Function
12.
Am J Hum Genet ; 102(6): 1090-1103, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29805044

ABSTRACT

The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.


Subject(s)
Chromosome Aberrations , Prenatal Diagnosis/methods , Chromosome Breakpoints , Cohort Studies , Conserved Sequence/genetics , Evolution, Molecular , Female , Genome, Human , Humans , Karyotyping , Pregnancy , RNA, Long Noncoding/genetics , Risk Factors , Sequence Analysis, DNA , Time Factors
13.
Mol Hum Reprod ; 27(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34463764

ABSTRACT

Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


Subject(s)
Adenylyl Cyclase Inhibitors/pharmacology , Fertilization/drug effects , Spermatozoa/drug effects , Adenylyl Cyclases/genetics , Adenylyl Cyclases/physiology , Animals , Cells, Cultured , Female , Fertilization/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Pregnancy , Spermatozoa/physiology
14.
Int J Med Microbiol ; 311(2): 151477, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33524636

ABSTRACT

OBJECTIVE: We aim to describe the epidemiological, clinical and microbiological characteristics of the linezolid- and vancomycin- resistant Enterococcus faecium (LVRE) in a tertiary care hospital in Germany. METHODS: We conducted a retrospective analysis of 196 LVRE cases observed from 1st January 2012 to 31th December 2018. Patients' medical charts were reviewed and available LVRE (n = 102) were subjected to whole-genome-sequencing. Antibiotic consumption was measured in defined daily dose (DDD)/100 bed-days (BD). RESULTS: The prevalence of LVRE isolates among VRE was 6.3 % in 2018. Most patients had an onco-hematological disease (134/196, 68.4 %). From 2012-2018 an increase of +356.7 % of linezolid defined daily dose/100 bed-days was observed. In 71.4 % (90/126, 70 missing values) of the patients, linezolid was prescribed in the previous 6 months. The median exposure to linezolid was 15 days (Interquartile, IQR 9-23). 42/196 (21.4 %) patients had an LVRE-related infection with an overall 30-day mortality rate of 33 %. In 121/196 (61.7 %) patients, linezolid-susceptible VREfm were isolated before LVRE, suggesting secondary acquisition of linezolid resistance. Genetic analysis revealed that most isolates belonged to ST117 (64/102 available isolates, 62.7 %). The G2576T 23S rDNA mutation was identified as the most common resistance mechanism (96/102, 94.1 %). poxtA was identified in two isolates, while cfr, and optrA were not detected. CONCLUSIONS: Incidence of LVRE related to 23S rDNA mutations is rising and probably associated with antibiotic consumption. Restrictions in the use of linezolid may be needed in order to retain therapeutic options in VRE.


Subject(s)
Drug Resistance, Bacterial , Enterococcus faecium/drug effects , Gram-Positive Bacterial Infections , Linezolid/pharmacology , Vancomycin Resistance , Anti-Bacterial Agents/pharmacology , Enterococcus faecium/genetics , Germany/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Humans , Microbial Sensitivity Tests , RNA, Ribosomal, 23S/genetics , Retrospective Studies , Vancomycin
15.
Eur Phys J E Soft Matter ; 44(2): 18, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33683488

ABSTRACT

Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.


Subject(s)
Cilia/metabolism , Optical Imaging/methods , Proteins/chemistry , Animals , Cell Line , Cell Membrane/ultrastructure , Cilia/ultrastructure , Humans , Mice , Microscopy, Fluorescence , Software
16.
Phys Chem Chem Phys ; 23(4): 2686-2696, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33481978

ABSTRACT

During a first-order phase transition, a thermodynamic system releases or absorbs latent heat. Despite their fundamental importance, the heat or enthalpy change occurring during protein crystallization has been directly measured only in a few cases, and the associated entropy change can only be determined indirectly. This work provides an experimental determination and theoretical analysis of the dependence of the molar crystallization enthalpy of lysozyme solutions, ΔHxtal, on the physicochemical solution parameters. Its value is determined directly by isothermal microcalorimetry and indirectly by a van't Hoff analysis of solubility data, which quantitatively agree. This suggests a two-state crystallization process, in which oligomeric intermediates play a minor role. ΔHxtal is found to be negative on the order of few tens of the thermal energy per molecule. It is independent of protein concentration and stirring speed, but weakly depends on salt (NaCl) concentration and solution pH. Assuming that crystals are electrostatically neutral, these trends are explained by a linearized Poisson-Boltzmann theory. In addition, the molar crystallization entropy, ΔSxtal, is analyzed. The dependence of the van't Hoff entropy on salt concentration and pH is captured by the model, complementing the analysis of crystallization thermodynamics.


Subject(s)
Muramidase/chemistry , Animals , Calorimetry , Chickens , Crystallization , Entropy , Thermodynamics
17.
Phys Chem Chem Phys ; 23(39): 22384-22394, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34608908

ABSTRACT

Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.


Subject(s)
Ethanol/chemistry , Muramidase/chemistry , Proteins/chemistry , Muramidase/metabolism , Solutions , Temperature , Water/chemistry
18.
Proc Natl Acad Sci U S A ; 115(30): 7789-7794, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987027

ABSTRACT

Circadian misalignment, such as in shift work, has been associated with obesity and type 2 diabetes. However, direct effects of circadian misalignment on skeletal muscle insulin sensitivity and the muscle molecular circadian clock have never been studied in humans. Here, we investigated insulin sensitivity and muscle metabolism in 14 healthy young lean men [age 22.4 ± 2.8 years; body mass index (BMI) 22.3 ± 2.1 kg/m2 (mean ± SD)] after a 3-d control protocol and a 3.5-d misalignment protocol induced by a 12-h rapid shift of the behavioral cycle. We show that short-term circadian misalignment results in a significant decrease in muscle insulin sensitivity due to a reduced skeletal muscle nonoxidative glucose disposal (rate of disappearance: 23.7 ± 2.4 vs. 18.4 ± 1.4 mg/kg per minute; control vs. misalignment; P = 0.024). Fasting glucose and free fatty acid levels as well as sleeping metabolic rate were higher during circadian misalignment. Molecular analysis of skeletal muscle biopsies revealed that the molecular circadian clock was not aligned to the inverted behavioral cycle, and transcriptome analysis revealed the human PPAR pathway as a key player in the disturbed energy metabolism upon circadian misalignment. Our findings may provide a mechanism underlying the increased risk of type 2 diabetes among shift workers.


Subject(s)
Diabetes Mellitus, Type 2/blood , Fatty Acids/blood , Gene Expression Profiling , Heart , Insulin Resistance , Muscle, Skeletal/metabolism , Obesity/blood , Adult , Diabetes Mellitus, Type 2/pathology , Humans , Male , Muscle, Skeletal/pathology , Obesity/pathology
19.
J Biol Chem ; 294(11): 3853-3871, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30662006

ABSTRACT

The nonlysosomal glucosylceramidase ß2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren-like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein-protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.


Subject(s)
Cerebellar Ataxia/metabolism , Locomotion/genetics , Loss of Function Mutation , Spastic Paraplegia, Hereditary/metabolism , beta-Glucosidase/metabolism , Animals , Biocatalysis , Cerebellar Ataxia/genetics , Glucosylceramidase , Humans , Mice , Mice, Knockout , Spastic Paraplegia, Hereditary/genetics , Species Specificity , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/deficiency , beta-Glucosidase/genetics
20.
Brain ; 142(11): 3636-3654, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31599329

ABSTRACT

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Subject(s)
Complement C1q/metabolism , Neurons/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Synapses/pathology , Tauopathies/genetics , Tauopathies/pathology , Animals , Autopsy , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Memory Disorders/etiology , Memory Disorders/psychology , Mice , Mice, Transgenic , Mutation , Spatial Learning , Tauopathies/psychology , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL