Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Transl Med ; 21(1): 166, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864526

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) modification has been recognized to play fundamental roles in the development of autoimmune diseases. However, the implication of m6A modification in myasthenia gravis (MG) remains largely unknown. Thus, we aimed to systematically explore the potential functions and related immune characteristics of m6A regulators in MG. METHODS: The GSE85452 dataset with MG and healthy samples was downloaded from Gene Expression Omnibus (GEO) database. m6A modification regulators were manually curated. The targets of m6A regulators were obtained from m6A2Target database. The differential expressed m6A regulators in GSE85452 dataset were identified by "limma" package and were validated by RT-PCR. Function enrichment analysis of dysregulated m6A regulators was performed using "clusterProfiler" package. Correlation analysis was applied for analyzing the relationships between m6A regulators and immune characteristics. Unsupervised clustering analysis was used to identify distinct m6A modification subtypes. The differences between subtypes were analyzed, including the expression level of all genes and the enrichment degree of immune characteristics. Weighted gene co-expression network analysis (WGCNA) was conducted to obtain modules associated with m6A modification subtypes. RESULTS: We found that CBLL1, RBM15 and YTHDF1 were upregulated in MG samples of GSE85452 dataset, and the results were verified by RT-PCR in blood samples from19 MG patients and 19 controls. The targeted genes common modified by CBLL1, RBM15, and YTHDF1 were mainly enriched in histone modification and Wnt signaling pathway. Correlation analysis showed that three dysregulated m6A regulators were closely associated with immune characteristics. Among them, RBM15 possessed the strongest correlation with immune characteristics, including CD56dim natural killer cell (r = 0.77, P = 0.0023), T follicular helper cell (r = - 0.86, P = 0.0002), Interferon Receptor (r = 0.78, P = 0.0017), and HLA-DOA (r = 0.64, P = 0.0200). Further two distinct m6A modification patterns mediated by three dysregulated m6A regulators was identified. Bioinformatics analysis found that there were 3029 differentially expressed genes and different immune characteristics between two m6A modification patterns. Finally, WGCNA analysis obtained a total of 12 modules and yellow module was the most positively correlated to subtype-2. CONCLUSION: Our findings suggested that m6A RNA modification had an important effect on immunity molecular mechanism of MG and provided a new perspective into understanding the pathogenesis of MG.


Subject(s)
Myasthenia Gravis , Humans , Myasthenia Gravis/genetics , Adenosine , Cluster Analysis , Computational Biology , Databases, Factual , Ubiquitin-Protein Ligases
2.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234739

ABSTRACT

Gentamicin is an aminoglycoside antibiotic commonly used to treat Gram-negative bacterial infections that possesses considerable nephrotoxicity. Oxymatrine is a phytochemical with the ability to counter gentamicin toxicity. We investigated the effects and protective mechanism of oxymatrine in rats. The experimental groups were as follows: Control, Oxymatrine only group (100 mg/kg/d), Gentamicin only group (100 mg/kg/d), Gentamicin (100 mg/kg/d) plus Oxymatrine (100 mg/kg/d) group (n = 10). All rats were treated for seven continuous days. The results indicated that oxymatrine alleviated gentamicin-induced kidney injury, and decreased rats' kidney indices and NAG (N-acetyl-beta-d-glucosaminidase), BUN (blood urea nitrogen) and CRE (creatine) serum levels. The oxymatrine-treated group sustained less histological damage. Oxymatrine also relived gentamicin-induced oxidative and nitrative stress, indicated by the increased SOD (superoxidase dismutase), GSH (glutathione) and CAT (catalase) activities and decreased MDA (malondialdehyde), iNOS (inducible nitric oxide synthase) and NO (nitric oxide) levels. Caspase-9 and -3 activities were also decreased in the oxymatrine-treated group. Oxymatrine exhibited a potent anti-inflammatory effect on gentamicin-induced kidney injury, down-regulated the Bcl-2ax and NF-κB mRNAs, and upregulated Bcl-2, HO-1 and Nrf2 mRNAs in the kidney tissue. Our investigation revealed the renal protective effect of oxymatrine in gentamicin-induced kidney injury for the first time. The effect was achieved through activation of the Nrf2/HO-1 pathways. The study underlines the potential clinical application of oxymatrine as a renal protectant agent for gentamicin therapy.


Subject(s)
Gentamicins , NF-E2-Related Factor 2 , Acetylglucosaminidase/metabolism , Acetylglucosaminidase/pharmacology , Alkaloids , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Caspase 9/metabolism , Catalase/metabolism , Creatine/metabolism , Gentamicins/adverse effects , Glutathione/metabolism , Kidney , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinolizines , Rats , Superoxide Dismutase/metabolism
3.
Analyst ; 145(20): 6683-6690, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32812541

ABSTRACT

Methylammonium lead halide perovskite quantum dots (MAPB-QDs) have been widely used for photovoltaic devices due to their special electronic structures. In this work, MAPB-QDs were used for the first time to detect polar organochlorine pesticides (OCPs) based on the phenomenon that the fluorescence spectra of MAPB-QDs were blue-shifted in the presence of polar OCPs. Furthermore, 1H NMR, FTIR, XPS and XRD were performed first to illustrate the sensing mechanism. In the presence of polar OCPs, the MAPB-QDs' capping ligands, oleic acid (OA) and oleylamine (OAm), were replaced with OCPs and then the chlorine element was adequately doped into QDs, resulting in the increase of the MAPB-QDs' bandgap. As result of the insufficient stability of MAPB-QDs in the presence of moisture, MAPB-QDs were mixed with PDMS and used as the colorimetric cards for fast detection of OCPs in real samples.

4.
Adv Exp Med Biol ; 1284: 23-33, 2020.
Article in English | MEDLINE | ID: mdl-32852737

ABSTRACT

Food intake and energy homeostasis determine survival of the organism and species. Information on total energy levels and metabolic state are sensed in the periphery and transmitted to the brain, where it is integrated and triggers the animal to forage, prey, and consume food. Investigating circuitry and cellular mechanisms coordinating energy balance and feeding behaviors has drawn on many state-of-the-art techniques, including gene manipulation, optogenetics, virus tracing, and single-cell sequencing. These new findings provide novel insights into how the central nervous system regulates food intake, and shed the light on potential therapeutic interventions for eating-related disorders such as obesity and anorexia.


Subject(s)
Brain/physiology , Feeding Behavior/physiology , Animals , Eating , Energy Metabolism , Homeostasis , Humans
5.
Anal Chem ; 90(15): 9060-9067, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29973046

ABSTRACT

In this work, highly photoluminescent (PL) self-assembled copper nanoclusters (Cu NCs) capable of rapid, sensitive, and selective detection of histamine were developed. Cu NCs were synthesized in facile conditions by using 2,3,5,6-tetrafluorothiophenol (TFTP) as both the reducing agent and the protecting ligand, which exhibited intense saffron yellow (590 nm) PL via self-assembled induced emission (SAIE), and the absolute quantum yield (QY) of assembly was as high as 43.0%. The size, electronic states, and morphologies of the assembled nanoribbons were characterized, and the geometric structure and spectral properties of the Cu NCs were investigated by theoretical study. Furthermore, the mechanism of the excellent sensing performance of Cu NCs toward histamine was demonstrated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDX). With this sensing system, the amount of histamine in fish, shrimp, and red wine were analyzed, and experiment results verified the application of the sensor. Importantly, the luminescent test strips based on Cu NCs were fabricated for colorimetric detection of histamine in foods. This proposed technique may provide an alternative to traditional methods for histamine detection.


Subject(s)
Copper/chemistry , Food Analysis/methods , Histamine/analysis , Luminescent Agents/chemistry , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Animals , Colorimetry/methods , Limit of Detection , Models, Molecular , Phenols/chemistry , Reducing Agents/chemistry , Seafood/analysis , Sulfhydryl Compounds/chemistry , Tuna/metabolism , Wine/analysis
6.
Phys Chem Chem Phys ; 16(39): 21363-71, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25179299

ABSTRACT

We investigated the thermal oxidation process of nanographene using activated carbon fibers (ACFs) by thermogravimetry (TG), X-ray photoemission spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance measurements. The oxidation process started from the edge of nanographene with the formation of phenol (-OH) or ether (C-O-C) groups attached to edge carbon atoms, as verified by the XPS and NEXAFS results. While the TG results indicated a decrease in the size of the nanographene sheet during the oxidation process, the intensity of the edge-state peak, i.e., the signature of the zigzag edge, decreased in the C K-edge NEXAFS spectra. This suggests that the zigzag edge preferentially reacted with oxygen and that the nanographene terminated with the thermodynamically unstable zigzag edges converted to one terminated with stable armchair edges. As the oxidation temperature increased, the activation energy for the electron hopping transport governed by the Coulomb gap variable range hopping between the nanographene sheets increased, and the tunneling barrier decreased. This change can be understood on the basis of the decrease in the size of the nanographene sheets together with the preferential etching of nanographene edges and the decrease in the inter-nanographene-sheet distance.

7.
Phys Chem Chem Phys ; 16(13): 6273-82, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24569838

ABSTRACT

We investigated the magnetic and electronic properties of nanographene and its charge transfer effect, using near edge X-ray absorption fine structure (NEXAFS), magnetic susceptibility and ESR measurements, and elemental analysis, with the employment of nanoporous carbon, which consists of a three dimensional disordered network of loosely stacked nanographene sheets, in relation to the host-guest interaction with HNO3 as the electron-accepting guest. The adsorption of electron acceptor HNO3 decreases the intensity of the edge state peak in NEXAFS as a result of the charge-transfer-induced Fermi energy downshift, in agreement with the decrease in the edge-state spin concentration, and it also induces the structural expansion, which makes the inter-nanographene sheet distance elongated, resulting in weakening of the inter-nanographene-sheet antiferromagnetic interaction as evidenced by the decrease in the Weiss temperature. In addition, the decomposition of HNO3, which takes place with the electron-rich edge state as an oxidation catalyst, results in the creation of oxygen/nitrogen-containing functional groups bonded to the periphery of the nanographene sheets. Heat-treatment of the HNO3-ACFs under evacuation desorbs the HNO3 molecules completely, though a part of the oxygen/nitrogen-containing species remains strongly bonded to the edge even at a high temperature of ∼800 °C, according to NEXAFS and elemental analysis results. These remaining species participate in the charge transfer, modifying the electronic structure as observed with the decrease in the orbital susceptibility and the strengthening of the inter-nanographene-sheet antiferromagnetic interaction.

8.
Clin Exp Optom ; 107(1): 75-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37121669

ABSTRACT

CLINICAL RELEVANCE: Children with uncorrected visual impairment have lower scores on various motor and cognitive tests. Exploring the association between visual impairment and school entrance age among school children in rural China may assist in enhancing the visual health of early-entry school students. BACKGROUND: Educational pressures may play a role in the visual health of students. School entrance age is associated with educational pressures. This study explored whether school entrance age can contribute to visual impairment among younger generations. METHODS: A cross-sectional study was conducted with 17,510 students from 252 primary schools in two prefectures in western China. Information on the sampled students was collected through questionnaires and vision examinations. The relationship between visual impairment and school entrance age was further analysed by multiple regression. The school entrance age was classified as early-entry and late-entry, early-entry was defined as students entering school at the age 6 years. RESULTS: The results showed that the myopia rate of early-entry students (26.92%) was higher than late-entry students (23.86%). Multiple regression showed that visual impairment increased with the earlier age of school entry (P = 0.044). The prevalence of myopia was also significantly higher in higher grades for children of the same age. The prevalence of myopia in 10-year-old and 11-year-old fourth- and fifth-grade students was 20.6% to 30.5%, 21.7% to 27.4% (P < 0.001). The near work with eyes was significantly different among children of the same age in different grades during this study (P < 0.001). CONCLUSION: Myopia is related to the school entrance age of children. Children who start school earlier are more likely to suffer from myopia. Educational pressures and digital screens may play a role in the association. Changes in the current education mode by reducing the study burden in the early years of learning may be significant.


Subject(s)
Myopia , Vision, Low , Child , Humans , Visual Acuity , Cross-Sectional Studies , Myopia/epidemiology , Schools , China/epidemiology , Prevalence
9.
Front Cell Infect Microbiol ; 14: 1439472, 2024.
Article in English | MEDLINE | ID: mdl-39165919

ABSTRACT

Background: Metagenomic next-generation sequencing (mNGS) technology has been widely used to diagnose various infections. Based on the most common pathogen profiles, targeted mNGS (tNGS) using multiplex PCR has been developed to detect pathogens with predesigned primers in the panel, significantly improving sensitivity and reducing economic burden on patients. However, there are few studies on summarizing pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China on large scale. Methods: From January 2021 to December 2023, bronchoalveolar lavage fluid (BALF) or sputum samples from 546 immunocompetent and immunocompromised patients with suspected community-acquired pneumonia were collected. Pathogen profiles in those patients on whom mNGS was performed were summarized. Additionally, we also evaluated the performance of tNGS in diagnosing pulmonary infections. Results: Combined with results of mNGS and culture, we found that the most common bacterial pathogens were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii in both immunocompromised and immunocompetent patients with high detection rates of Staphylococcus aureus and Enterococcus faecium, respectively. For fungal pathogens, Pneumocystis jirovecii was commonly detected in patients, while fungal infections in immunocompetent patients were mainly caused by Candida albicans. Most of viral infections in patients were caused by Human betaherpesvirus 5 and Human gammaherpesvirus 4. It is worth noting that, compared with immunocompetent patients (34.9%, 76/218), more mixed infections were found in immunocompromised patients (37.8%, 14/37). Additionally, taking final comprehensive clinical diagnoses as reference standard, total coincidence rate of BALF tNGS (81.4%, 48/59) was much higher than that of BALF mNGS (40.0%, 112/280). Conclusions: Our findings supplemented and classified the pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China. Most importantly, our findings can accelerate the development and design of tNGS specifically used for regional pulmonary infections.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Immunocompromised Host , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Male , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Female , Middle Aged , China , Adult , Aged , Young Adult , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Sputum/microbiology , Sputum/virology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/microbiology , Community-Acquired Infections/virology , Adolescent , Immunocompetence , Pneumonia/diagnosis , Pneumonia/microbiology , Pneumonia/virology , Aged, 80 and over
10.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731734

ABSTRACT

Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.

11.
Antioxidants (Basel) ; 13(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929100

ABSTRACT

Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng granules (LWG) in the treatment of DHSD and to identify the blood transport components of LWG. We assessed the efficacy of LWG in DHSD by various in vivo metrics such as body weight, disease activity index (DAI), histopathologic examination, intestinal barrier function, levels of inflammatory, apoptotic biomarkers, and oxidative stress. We identified the blood components of LWG using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS), and the resolved key components were used to explore the relevant targets. We next predicted the potential mechanisms of LWG in treating DHSD using network pharmacology and molecular docking based on the relevant targets. Finally, the mechanisms were validated in vivo using RT-qPCR, Western blotting, ELISA, and immunofluorescence and evaluated in vitro using Cell Counting Kit-8 (CCK-8), small interfering RNA, cellular enthusiasm transfer assay (CETSA), and drug affinity response target stability (DARTS). Ninety-one pharmacodynamic components of LWG enter the bloodstream and exert possible therapeutic effects. In vivo, LWG treatment improved body weight, reduced colonic injury and DAI scores, lowered inflammation, oxidative stress, and apoptosis markers, and partially restored intestinal barrier function in DHSD mice. Guided by network pharmacology and molecular docking, it is suggested that LWG may exert therapeutic effects by inhibiting IL-6/STAT3/PI3K/AKT signaling. LWG significantly decreased the expression of IL-6, p-STAT3, p-PI3K, p-AKT, and other proteins. These findings were supported by in vitro experiments, where CETSA, DARTS, and siRNA evidenced LWG's targeting of STAT3. LWG targeted STAT3 to inhibit inflammation, oxidative stress, and apoptosis in the colon, thereby restoring the intestinal barrier function to some extent and exerting a therapeutic effect on DHSD.

12.
Int J Biol Macromol ; 279(Pt 2): 135144, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39208892

ABSTRACT

Soybean hull polysaccharides (SHPS) enhance the physicochemical properties of plant-based yogurt. However, their effects on the nutritional profile and biochemical mechanisms remain unclear. This study aimed to assess the impact of SHPS addition on the nonvolatile components of plant-based yogurt and its underlying mechanisms through widely targeted metabolomics analysis. The results demonstrated that the addition of SHPS (0.2 %-1.0 % w/v) enhanced the levels of free amino acids, sugars, and organic acids, with the addition of 0.6 % w/v being particularly effective in improving yogurt quality. Widely targeted metabolomics analysis revealed 278 differential metabolites between yogurt supplemented with 0.6 % SHPS (SPY) and the control sample. SHPS increased the content of various metabolites, including amino acids and derivatives, saccharides, organic acids, and flavonoids, among others. Key metabolic pathways affected by SHPS included pantothenate and CoA biosynthesis; valine, leucine, and isoleucine biosynthesis; and benzoate degradation. As the primary component of SHPS, galacturonic acid affected the metabolic products in yogurt by participating in the pentose and glucuronate interconversions and ascorbate and aldarate metabolism pathways. These findings elucidate the role of SHPS in modulating the nutritional composition of plant-based yogurt, offering valuable insights into its functional mechanisms in food processing.

13.
Mol Neurobiol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017976

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies. The important roles of circRNAs modified by m6A methylation have been reported in the pathogenesis of other autoimmune diseases, but remain unclear in MG. To address this point, we collected peripheral blood mononuclear cells from six MG patients and six healthy controls and performed m6A­circRNA epitranscriptomic microarray and RNA sequencing. Differentially m6A-modified circRNAs and differentially expressed genes (DEGs) were analyzed. A network was constructed containing 17 circRNAs, 30 miRNAs, and 34 DEGs. The GSE85452 dataset was downloaded. DEGs that were differentially expressed in the GSE85452 dataset were selected as seed genes. Finally, four candidate m6A-modified circRNAs (hsa_circ_0084735, hsa_circ_0018652, hsa_circ_0025731, and hsa_circ_0030997) were identified through a random walk with restart. We found that they had different degree correlations with different immune cells. The results of MeRIP-qPCR showed that the m6A methylated levels of hsa_circ_0084735 and hsa_circ_0025731 were downregulated in MG patients, while the other two circRNAs were not significantly different between MG and control group. For the first time, we explored the pathogenesis of MG at the epigenetic transcriptome level. Our results will open new perspectives for MG research and identify potential biomarkers and therapeutic targets for MG.

14.
Nat Commun ; 14(1): 553, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36725859

ABSTRACT

The quickly accumulating ribosome profiling data is an insightful resource for studying the critical details of translation regulation under various biological contexts. Rocaglamide A (RocA), an antitumor heterotricyclic natural compound, has been shown to inhibit translation initiation of a large group of mRNA species by clamping eIF4A onto poly-purine motifs in the 5' UTRs. However, reanalysis of previous ribosome profiling datasets reveals an unexpected shift of the ribosome occupancy pattern, upon RocA treatment in various types of cells, during early translation elongation for a specific group of mRNA transcripts without poly-purine motifs over-represented in their 5' UTRs. Such perturbation of translation elongation dynamics can be attributed to the blockage of translating ribosomes due to the binding of eIF4A to the poly-purine sequence in coding regions. In summary, our study presents the complete dual modes of RocA in blocking translation initiation and elongation, which underlie the potent antitumor effect of RocA.


Subject(s)
Protein Biosynthesis , Ribosome Profiling , 5' Untranslated Regions , RNA, Messenger/metabolism
15.
Physiol Behav ; 271: 114333, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595819

ABSTRACT

The bed nucleus of the stria terminalis (BNST) plays an important role in feeding regulation through projections to other brain areas. However, whether functional distinctions exist within different BNST cells is not clear. Here, we found optogenetic activation of LH-projecting BNST neurons induced aversion and significantly reduced consumption of normal chow but not high-fat diets (HFD). In contrast, photoactivation of vlPAG-projecting BNST neurons induced place preference and promoted HFD intake, without affecting normal chow consumption. Moreover, optogenetic silencing of LH-projecting BNST neurons reduced the consumption of normal chow in fasted mice, while photoinhibition of vlPAG-projecting BNST neurons decreased the consumption of HFD in both fed and fasted mice. We then labeled the LH- and vlPAG-projecting BNST neurons using retroAAV-GFP and retroAAV-mCherry, respectively, and found these two populations of neurons have different anatomical distribution and electrophysiological properties. Taken together, we identified vlPAG-projecting and LH-projecting BNST neurons are two distinct populations of cells with significant differences in functional and anatomic characteristics.

16.
Sci Adv ; 9(44): eadh2884, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37910621

ABSTRACT

Overeating disorders largely contribute to worldwide incidences of obesity. Available treatments are limited. Here, we discovered that long-term chemogenetic activation of ventrolateral periaqueductal gray (vlPAG) GABAergic cells rescue obesity of high-fat diet-induced obesity (DIO) mice. This was associated with the recovery of enhanced mIPSCs, decreased food intake, increased energy expenditure, and inguinal white adipose tissue (iWAT) browning. In vivo calcium imaging confirmed vlPAG GABAergic suppression for DIO mice, with corresponding reduction in intrinsic excitability. Single-nucleus RNA sequencing identified transcriptional expression changes in GABAergic cell subtypes in DIO mice, highlighting Cacna2d1 as of potential importance. Overexpressing CACNA2D1 in vlPAG GABAergic cells of DIO mice rescued enhanced mIPSCs and calcium response, reversed obesity, and therefore presented here as a potential target for obesity treatment.


Subject(s)
Calcium , Diet, High-Fat , Mice , Animals , Diet, High-Fat/adverse effects , Calcium/metabolism , Obesity/etiology , Obesity/metabolism , Adipose Tissue, White/metabolism , Mesencephalon , Mice, Inbred C57BL
17.
Front Immunol ; 14: 1141983, 2023.
Article in English | MEDLINE | ID: mdl-37223097

ABSTRACT

Background: The safety of COVID-19 vaccines has been clarified in clinical trials; however, some immunocompromised patients, such as myasthenia gravis (MG) patients, are still hesitant to receive vaccines. Whether COVID-19 vaccination increases the risk of disease worsening in these patients remains unknown. This study aims to evaluate the risk of disease exacerbation in COVID-19-vaccinated MG patients. Methods: The data in this study were collected from the MG database at Tangdu Hospital, the Fourth Military Medical University, and the Tertiary Referral Diagnostic Center at Huashan Hospital, Fudan University, from 1 April 2022 to 31 October 2022. A self-controlled case series method was applied, and the incidence rate ratios were calculated in the prespecified risk period using conditional Poisson regression. Results: Inactivated COVID-19 vaccines did not increase the risk of disease exacerbation in MG patients with stable disease status. A few patients experienced transient disease worsening, but the symptoms were mild. It is noted that more attention should be paid to thymoma-related MG, especially within 1 week after COVID-19 vaccination. Conclusion: COVID-19 vaccination has no long-term impact on MG relapse.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myasthenia Gravis , Thymus Neoplasms , Humans , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Research Design , Tertiary Care Centers
18.
Front Neurol ; 14: 1336823, 2023.
Article in English | MEDLINE | ID: mdl-38283685

ABSTRACT

Background: Thymectomy is an efficient and standard treatment strategy for patients with myasthenia gravis (MG), postoperative myasthenic crisis (POMC) is the major complication related to thymectomy and has a strongly life-threatening effect. As a biomarker, whether the bilirubin level is a risk factor for MG progression remains unclear. This study aimed to investigate the association between the preoperative bilirubin level and postoperative myasthenic crisis (POMC). Methods: We analyzed 375 patients with MG who underwent thymectomy at Tangdu Hospital between January 2012 and September 2021. The primary outcome measurement was POMC. The association between POMC and bilirubin level was analyzed by restricted cubic spline (RCS). Indirect bilirubin (IBIL) was divided into two subgroups based on the normal upper limit of IBIL, 14 µmol/L. Results: Compared with non-POMC group, IBIL levels were significantly higher in patients with POMC. Elevated IBIL levels were closely associated with an increased risk of POMC (p for trend = 0.002). There was a dose-response curve relationship between IBIL levels and POMC incidence (p for non-linearity = 0.93). However, DBIL levels showed a U-shaped association with POMC incidence. High IBIL level (≥14 µmol/L) was an independent predictive factor for POMC [odds ratio = 3.47, 95% confidence interval (CI): 1.56-7.8, p = 0.002]. The addition of high IBIL levels improved the prediction model performance (net reclassification index = 0.186, 95% CI: 0.039-0.334; integrated discrimination improvement = 0.0345, 95% CI: 0.005-0.065). Conclusion: High preoperative IBIL levels, especially those exceeding the normal upper limit, could independently predict the incidence of POMC.

19.
J Hazard Mater ; 428: 128262, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35051771

ABSTRACT

Organophosphorus pesticides (OPs) detection has attracted considerable attention because of the extensive application of OPs. In this research, non-toxic and high-performance metalloenzyme mimics of Zn2+-bonding peptides were developed by obtaining inspiration from phosphotriesterase (PTE) and nanofiber formation. Furthermore, based on the electrochemical activity of p-nitrophenol (PNP), the electrochemical sensor of metalloenzyme mimics was developed. By examining the effect of the active sites of peptides and fibril formation on the degradation of OPs, the optimal metalloenzyme mimic was selected. Furthermore, optimal metalloenzyme mimics were combined with NiCo2O4 to develop an electrochemical sensor of OPs. By monitoring square wave voltammetry (SWV) signals of PNP degraded from OPs, the amounts of OPs in actual samples could be determined in 15 min. We discovered that both the active sites of α metal and ß metal were required for metalloenzyme mimics; Zn2+ promoted peptide fibrosis and especially acted as a cofactor for degrading OPs. Compared to traditional methods, the electrochemical sensor of metalloenzyme mimics was sensitive, reliable, and non-toxic; furthermore, the detection limit of methyl paraoxon was as low as 0.08 µM. The metalloenzyme mimics will be a promising material for detecting OPs in the food industry and environment fields.


Subject(s)
Biosensing Techniques , Metalloproteins , Pesticides , Organophosphorus Compounds , Peptides
20.
ACS Chem Neurosci ; 13(6): 766-775, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35230090

ABSTRACT

Polyphenols are the class of naturally synthesized compounds in the secondary metabolism of plants, which are widely distributed in fruits and vegetables. Their potential health treatment strategies have attracted wide attention in the scientific community. The abnormal aggregation of Aß to form mature fibrils is pathologically related to Alzheimer's disease (AD). Therefore, inhibiting Aß40 fibrillogenesis was considered to be the major method for the intervention and therapy of AD. Glycosides, as a cluster of natural phenolic compounds, are widely distributed in Chinese herbs, fruits, and vegetables. The inhibitory effect of glycosides (phloridzin, salidroside, polydatin, geniposide, and gastrodin) and their corresponding small molecules (phloretin, 4-hydroxyphenyl ethanol, resveratrol, genipin, and 4-hydroxybenzyl alcohol) on Aß40 aggregation and fibrils prolongation, disaggregation against mature fibrils, and the resulting cytotoxicity were studied by systematical biochemical, cell biology and molecular docking techniques, respectively. As a result, all inhibitors were observed against Aß40 aggregation and fibrils prolongation and disaggregated mature Aß40 fibrils in a dose-dependent manner. Besides, the cell validity experiments also showed that all inhibitors could effectively alleviate the cytotoxicity induced by Aß40 aggregates, and the glycoside groups played important roles in this inhibiting process. Finally, molecular docking was performed to study the interactions between these inhibitors and Aß40. Docking showed that all inhibitors were bound to the similar region of Aß40, and glycoside group formed hydrogen bonds with the pivotal residues Lys16. These results indicated that the glycoside groups could increase the inhibitory effects and reduce cytotoxicity. Glycosides have tremendous potential to be developed as an innovative type of aggregation inhibitor to control and treat neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Glycosides/pharmacology , Humans , Hydrogen Bonding , Molecular Docking Simulation , Peptide Fragments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL