Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Cogn Neurosci ; : 1-15, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39485906

ABSTRACT

To test whether targeting left and right posterior parietal cortex (PPC) with continuous theta-burst stimulation (cTBS) in healthy adults would strengthen associative memory (AM) performance. This study consisted of two experiments (a behavioral experiment and a formal experiment during each of the two experimental sessions). In Experiment 1, 18 adults (one male, age = 22.83 ± 3.92 years) were included in the behavioral phase and 18 adults (seven males, age = 40.11 ± 12.27 years) in the stimulation phase. There were 120 neutral facial images paired with 120 two-character nouns and then divided into six test versions (10 male faces and 10 female faces paired with 20 different nouns were considered as one version). In the behavioral experiment, participants were tested by six-version tests to assess memory materials, and in the formal experiment, participants' face-word AM performance was measured by certified tests based on a cued recall paradigm. Furthermore, 30 adults (seven males, age = 20.97 ± 1.85 years) and 15 adults (five males, age = 22.27 ± 1.29 years) participated in Experiment 2, respectively. Stimuli and procedure were the same as in Experiment 1, but the AM test was based on a forced-choice paradigm. Experiment 1 did not yield anticipated outcomes; Experiment 2 showed that cTBS of left and right PPC strengthened the AM performance compared with the control condition. In conclusion, cTBS to left and right PPC improved AM in healthy adults, which provided further experimental evidence for strengthening AM by cTBS.

2.
Eur J Neurosci ; 59(8): 2118-2127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38282277

ABSTRACT

Early diagnosis is crucial to slowing the progression of Alzheimer's disease (AD), so it is urgent to find an effective diagnostic method for AD. This study intended to investigate whether the transfer learning approach of deep Q-network (DQN) could effectively distinguish AD patients using local metrics of resting-state functional magnetic resonance imaging (rs-fMRI) as features. This study included 1310 subjects from the Consortium for Reliability and Reproducibility (CoRR) and 50 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) GO/2. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF) and percent amplitude of fluctuation (PerAF) were extracted as features using the Power 264 atlas. Based on gender bias in AD, we searched for transferable similar parts between the CoRR feature matrix and the ADNI feature matrix, resulting in the CoRR similar feature matrix served as the source domain and the ADNI similar feature matrix served as the target domain. A DQN classifier was pre-trained in the source domain and transferred to the target domain. Finally, the transferred DQN classifier was used to classify AD and healthy controls (HC). A permutation test was performed. The DQN transfer learning achieved a classification accuracy of 86.66% (p < 0.01), recall of 83.33% and precision of 83.33%. The findings suggested that the transfer learning approach using DQN could be an effective way to distinguish AD from HC. It also revealed the potential value of local brain activity in AD clinical diagnosis.


Subject(s)
Alzheimer Disease , Brain , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Sexism , Machine Learning
3.
Cereb Cortex ; 33(12): 7771-7782, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36935094

ABSTRACT

Poststroke aphasia is an acquired language disorder and has been proven to have adverse effects on patients' social skills and quality of life. However, there are some inconsistencies in the neuroimaging studies investigating poststroke aphasia from the perspective of regional alterations. A meta-analysis has been employed to examine the common pattern of abnormal regional spontaneous brain activity in poststroke aphasia in the current study. Specifically, the Anisotropic effect-size version of seed-based d mapping was utilized, and 237 poststroke aphasia patients and 242 healthy controls (HCs) from 12 resting-state functional magnetic resonance imaging studies using amplitude of low-frequency fluctuations (ALFF), fractional ALFF, or regional homogeneity were included. The results showed that compared with HCs, patients with poststroke aphasia demonstrated increased regional spontaneous brain activity in the right insula, right postcentral gyrus, left cerebellar lobule IX, left angular gyrus, right caudate nucleus, left parahippocampal gyrus, and right supplementary motor area, and decreased regional spontaneous brain activity in the left cerebellar lobule VI, left median cingulate and paracingulate gyri, right cerebellar crus I, and left supplementary motor area. The study could provide further evidence for pathophysiological mechanism of poststroke aphasia and help find targets for treatment.


Subject(s)
Aphasia , Quality of Life , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aphasia/diagnostic imaging , Aphasia/etiology , Brain Mapping/methods
4.
Neural Plast ; 2022: 2219993, 2022.
Article in English | MEDLINE | ID: mdl-36437903

ABSTRACT

Objective: This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods: A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results: Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion: This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.


Subject(s)
Ischemic Attack, Transient , Motor Cortex , Humans , Ischemic Attack, Transient/diagnostic imaging , Motor Cortex/diagnostic imaging , Brain , Magnetic Resonance Imaging , Brain Mapping
5.
Brain Res ; 1827: 148767, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38224827

ABSTRACT

BACKGROUND: Aerobic training has been shown to effectively prevent the progression of depressive symptoms from subthreshold depression (StD) to major depressive disorder (MDD), and understanding how aerobic training promotes changes in neuroplasticity is essential to comprehending its antidepressant effects. Few studies, however, have quantified the alterations in spontaneous brain activity before and after aerobic training for StD. METHODS: Participants included 44 individuals with StD and 34 healthy controls (HCs). Both groups underwent moderate aerobic training for eight weeks, and resting state functional magnetic resonance imaging (rs-fMRI) data were collected before and after training. The degree centrality (DC) changes between the two groups and the DC changes in each group before and after training were quantified. RESULTS: The rs-fMRI results showed that compared with the HCs, the DC values of the StD group in the orbital region of the left inferior frontal gyrus significantly depreciated at baseline. After aerobic training, the results of the follow-up examination revealed no significant difference in the DC values between the two groups. In addition, compared with baseline, the StD group exhibited an significant decrease in the DC values of the left dorsolateral superior frontal gyrus; while the HCs group exhibited an significant decrease in the DC values of the left thalamus. No statistically significant connection was seen between changes in DC values and psychological scale scores in the StD group. CONCLUSIONS: Our findings suggest that regular aerobic training can enhance brain plasticity in StD. In addition, we demonstrated that DC is a relevant and accessible method for evaluating the functional plasticity of the brain induced by aerobic training in StD.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/therapy , Depression/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods
6.
Brain Imaging Behav ; 18(1): 19-33, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821673

ABSTRACT

This study intended to investigate the frequency specific brain oscillation activity in patients with acute basal ganglia ischemic stroke (BGIS) by using the degree centrality (DC) method. A total of 34 acute BGIS patients and 44 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The DC values in three frequency bands (conventional band: 0.01-0.08 Hz, slow­4 band: 0.027-0.073 Hz, slow­5 band: 0.01-0.027 Hz) were calculated. A two-sample t-test was used to explore the between-group differences in the conventional frequency band. A two-way repeated-measures analysis of variance (ANOVA) was used to analyze the DC differences between groups (BGIS patients, HCs) and bands (slow­4, slow­5). Moreover, correlations between DC values and clinical indicators were performed. In conventional band, the DC value in the right middle temporal gyrus was decreased in BGIS patients compared with HCs. Significant differences of DC were observed between the two bands mainly in the bilateral cortical brain regions. Compared with the HCs, the BGIS patients showed increased DC in the right superior temporal gyrus and the left precuneus, but decreased mainly in the right inferior temporal gyrus, right inferior occipital gyrus, right precentral, and right supplementary motor area. Furthermore, the decreased DC in the right rolandic operculum in slow-4 band and the right superior temporal gyrus in slow-5 band were found by post hoc two-sample t-test of main effect of group. There was no significant correlation between DC values and clinical scales after Bonferroni correction. Our findings showed that the DC changes in BGIS patients were frequency specific. Functional abnormalities in local brain regions may help us to understand the underlying pathogenesis mechanism of brain functional reorganization of BGIS patients.


Subject(s)
Ischemic Stroke , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping , Brain/diagnostic imaging , Basal Ganglia/diagnostic imaging
7.
Brain Imaging Behav ; 18(2): 456-474, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150133

ABSTRACT

Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.


Subject(s)
Anxiety Disorders , Brain , Gray Matter , Magnetic Resonance Imaging , Humans , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/pathology , Brain/pathology , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Organ Size
8.
Front Neurosci ; 17: 1136790, 2023.
Article in English | MEDLINE | ID: mdl-36937687

ABSTRACT

Migraine-a disabling neurological disorder, imposes a tremendous burden on societies. To reduce the economic and health toll of the disease, insight into its pathophysiological mechanism is key to improving treatment and prevention. Resting-state functional magnetic resonance imaging (rs-fMRI) studies suggest abnormal functional connectivity (FC) within the default mode network (DMN) in migraine patients. This implies that DMN connectivity change may represent a biomarker for migraine. However, the FC abnormalities appear inconsistent which hinders our understanding of the potential neuropathology. Therefore, we performed a meta-analysis of the FC within the DMN in migraine patients in the resting state to identify the common FC abnormalities. With efficient search and selection strategies, nine studies (published before July, 2022) were retrieved, containing 204 migraine patients and 199 healthy subjects. We meta-analyzed the data using the Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) method. Compared with healthy subjects, migraine patients showed increased connectivity in the right calcarine gyrus, left inferior occipital gyrus, left postcentral gyrus, right cerebellum, right parahippocampal gyrus, and right posterior cingulate gyrus, while decreased connectivity in the right postcentral gyrus, left superior frontal gyrus, right superior occipital gyrus, right orbital inferior frontal gyrus, left middle occipital gyrus, left middle frontal gyrus and left inferior frontal gyrus. These results provide a new perspective for the study of the pathophysiology of migraine and facilitate a more targeted treatment of migraine in the future.

9.
Front Neurosci ; 17: 1236069, 2023.
Article in English | MEDLINE | ID: mdl-37942144

ABSTRACT

Background: Irritable bowel syndrome (IBS) is a brain-gut disorder with high global prevalence, resulting from abnormalities in brain connectivity of the default mode network and aberrant changes in gray matter (GM). However, the findings of previous studies about IBS were divergent. Therefore, we conducted a meta-analysis to identify common functional and structural alterations in IBS patients. Methods: Altogether, we identified 12 studies involving 194 IBS patients and 230 healthy controls (HCs) from six databases using whole-brain resting state functional connectivity (rs-FC) and voxel-based morphometry. Anisotropic effect-size signed differential mapping (AES-SDM) was used to identify abnormal functional and structural changes as well as the overlap brain regions between dysconnectivity and GM alterations. Results: Findings indicated that, compared with HCs, IBS patients showed abnormal rs-FC in left inferior parietal gyrus, left lingual gyrus, right angular gyrus, right precuneus, right amygdala, right median cingulate cortex, and left hippocampus. Altered GM was detected in the fusiform gyrus, left triangular inferior frontal gyrus (IFG), right superior marginal gyrus, left anterior cingulate gyrus, left rectus, left orbital IFG, right triangular IFG, right putamen, left superior parietal gyrus and right precuneus. Besides, multimodal meta-analysis identified left middle frontal gyrus, left orbital IFG, and right putamen as the overlapped regions. Conclusion: Our results confirm that IBS patients have abnormal alterations in rs-FC and GM, and reveal brain regions with both functional and structural alterations. These results may contribute to understanding the underlying pathophysiology of IBS. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42022351342.

10.
J Affect Disord ; 312: 69-77, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35710036

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is associated with altered brain connectivity. Previous studies have focused on the static functional connectivity pattern from amygdala subregions in ASD while ignoring its dynamics. Considering that dynamic functional connectivity (dFC) can provide different perspectives, the present study aims to investigate the dFC pattern of the amygdala subregions in ASD patients. METHODS: Data of 618 ASD patients and 836 typical controls (TCs) of 30 sites were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. The sliding window approach was applied to conduct seed-based dFC analysis. The seed regions were bilateral basolateral (BLA) and centromedial-superficial amygdala (CSA). A two-sample t-test was done at each site. Image-based meta-analysis (IBMA) based on the results from all sites was performed. Correlation analysis was conducted between the dFC values and the clinical scores. RESULTS: The ASD patients showed lower dFC between the left BLA and the bilateral inferior temporal (ITG)/left superior frontal gyrus, between the right BLA and right ITG/right thalamus/left superior temporal gyrus, and between the right CSA and middle temporal gyrus. The ASD patients showed higher dFC between the left BLA and temporal lobe/right supramarginal gyrus, between the right BLA and left calcarine gyrus, and between the left CSA and left calcarine gyrus. Correlation analysis revealed that the symptom severity was positively correlated with the dFC between the bilateral BLA and ITG in ASD. CONCLUSIONS: Abnormal dFC of the specific amygdala subregions may provide new insights into the pathological mechanisms of ASD.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Amygdala , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Brain , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods
11.
Front Neurosci ; 16: 927556, 2022.
Article in English | MEDLINE | ID: mdl-35924226

ABSTRACT

Social function impairment is the core deficit of autism spectrum disorder (ASD). Although many studies have investigated ASD through a variety of neuroimaging tools, its brain mechanism of social function remains unclear due to its complex and heterogeneous symptoms. The present study aimed to use resting-state functional magnetic imaging data to explore effective connectivity between the right temporoparietal junction (RTPJ), one of the key brain regions associated with social impairment of individuals with ASD, and the whole brain to further deepen our understanding of the neuropathological mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to investigate the differences in effective connectivity between the ASD and TD groups in every site. Next, to obtain further accurate and representative results, an image-based meta-analysis was implemented to further analyze the GCA results of each site. Our results demonstrated abnormal causal connectivity between the RTPJ and the widely distributed brain regions and that the connectivity has been associated with social impairment in individuals with ASD. The current study could help to further elucidate the pathological mechanisms of ASD and provides a new perspective for future research.

12.
Front Aging Neurosci ; 14: 938646, 2022.
Article in English | MEDLINE | ID: mdl-36034147

ABSTRACT

Objective: The aim of this study was to investigate the spontaneous regional neural activity abnormalities in patients with acute basal ganglia ischemic stroke (BGIS) using a multifrequency bands regional homogeneity (ReHo) method and to explore whether the alteration of ReHo values was associated with clinical characteristics. Methods: In this study, 34 patients with acute BGIS and 44 healthy controls (HCs) were recruited. All participants were examined by resting-state functional magnetic resonance imaging (rs-fMRI). The ReHo method was used to detect the alterations of spontaneous neural activities in patients with acute BGIS. A two-sample t-test comparison was performed to compare the ReHo value between the two groups, and a Pearson correlation analysis was conducted to assess the relationship between the regional neural activity abnormalities and clinical characteristics. Results: Compared with the HCs, the patients with acute BGIS showed increased ReHo in the left caudate and subregions such as the right caudate and left putamen in conventional frequency bands. In the slow-5 frequency band, patients with BGIS showed decreased ReHo in the left medial cingulum of BGIS compared to the HCs and other subregions such as bilateral caudate and left putamen. No brain regions with ReHo alterations were found in the slow-4 frequency band. Moreover, we found that the ReHo value of left caudate was positively correlated with the NIHSS score. Conclusion: Our findings revealed the alterations of ReHo in patients with acute BGIS in a specific frequency band and provided a new insight into the pathogenesis mechanism of BGIS. This study demonstrated the frequency-specific characteristics of ReHo in patients with acute BGIS, which may have a positive effect on the future neuroimaging studies.

SELECTION OF CITATIONS
SEARCH DETAIL