Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Cell Proteomics ; 23(5): 100753, 2024 May.
Article in English | MEDLINE | ID: mdl-38527648

ABSTRACT

Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.


Subject(s)
Antigens, Bacterial , Immunoglobulin G , Protein Binding , Streptococcus pyogenes , Animals , Streptococcus pyogenes/immunology , Streptococcus pyogenes/metabolism , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Mice , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Adaptive Immunity , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Antibodies, Bacterial/immunology , Protein Interaction Maps , Mass Spectrometry , Carrier Proteins/metabolism , Carrier Proteins/immunology , Female , Host-Pathogen Interactions/immunology
2.
EMBO Rep ; 24(12): e57910, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983950

ABSTRACT

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Animals , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Endoplasmic Reticulum/metabolism , Mammals/metabolism , Peptides/metabolism , Protein Transport
3.
EMBO Rep ; 24(7): e56467, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37155564

ABSTRACT

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Complement Factor H/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Neuroinflammatory Diseases , Apolipoproteins E/chemistry , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
J Biol Chem ; 299(11): 105345, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838172

ABSTRACT

The important bacterial pathogen Streptococcus pyogenes secretes IdeS (immunoglobulin G-degrading enzyme of S. pyogenes), a proteinase that cleaves human immunoglobulin G (IgG) antibodies in the hinge region resulting in Fc (fragment crystallizable) and F(ab')2 (fragment antigen-binding) fragments and protects the bacteria against phagocytic killing. Experiments with radiolabeled IdeS and flow cytometry demonstrated that IdeS binds to the surface of S. pyogenes, and the interaction was most prominent in conditions resembling those in the pharynx (acidic pH and low salt), the habitat for S. pyogenes. SpnA (S. pyogenes nuclease A) is a cell wall-anchored DNase. A dose-dependent interaction between purified SpnA and IdeS was demonstrated in slot binding and surface plasmon resonance spectroscopy experiments. Gel filtration showed that IdeS forms proteolytically active complexes with SpnA in solution, and super-resolution fluorescence microscopy revealed the presence of SpnA-IdeS complexes at the surface of S. pyogenes. Finally, specific IgG antibodies binding to S. pyogenes surface antigens were efficiently cleaved by surface-associated IdeS. IdeS is secreted by all S. pyogenes isolates and cleaves IgG antibodies with a unique degree of specificity and efficiency. These properties and the finding here that the proteinase is present and fully active at the bacterial surface in complex with SpnA implicate an important role for IdeS in S. pyogenes biology and pathogenesis.


Subject(s)
Bacterial Proteins , Streptococcus pyogenes , Humans , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G , Peptide Hydrolases , Streptococcus pyogenes/metabolism
5.
Anal Chem ; 96(22): 9060-9068, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38701337

ABSTRACT

An important element of antibody-guided vaccine design is the use of neutralizing or opsonic monoclonal antibodies to define protective epitopes in their native three-dimensional conformation. Here, we demonstrate a multimodal mass spectrometry-based strategy for in-depth characterization of antigen-antibody complexes to enable the identification of protective epitopes using the cytolytic exotoxin Streptolysin O (SLO) from Streptococcus pyogenes as a showcase. We first discovered a monoclonal antibody with an undisclosed sequence capable of neutralizing SLO-mediated cytolysis. The amino acid sequence of both the antibody light and the heavy chain was determined using mass-spectrometry-based de novo sequencing, followed by chemical cross-linking mass spectrometry to generate distance constraints between the antibody fragment antigen-binding region and SLO. Subsequent integrative computational modeling revealed a discontinuous epitope located in domain 3 of SLO that was experimentally validated by hydrogen-deuterium exchange mass spectrometry and reverse engineering of the targeted epitope. The results show that the antibody inhibits SLO-mediated cytolysis by binding to a discontinuous epitope in domain 3, likely preventing oligomerization and subsequent secondary structure transitions critical for pore-formation. The epitope is highly conserved across >98% of the characterized S. pyogenes isolates, making it an attractive target for antibody-based therapy and vaccine design against severe streptococcal infections.


Subject(s)
Bacterial Proteins , Epitopes , Mass Spectrometry , Streptococcus pyogenes , Streptolysins , Streptococcus pyogenes/immunology , Streptococcus pyogenes/chemistry , Streptolysins/chemistry , Streptolysins/immunology , Streptolysins/metabolism , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Epitopes/immunology , Epitopes/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Amino Acid Sequence , Models, Molecular
6.
PLoS Comput Biol ; 19(1): e1010457, 2023 01.
Article in English | MEDLINE | ID: mdl-36668672

ABSTRACT

Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep learning models have represented a performance breakthrough. Incorporating that technology into de novo protein sequencing workflows require machine-learning models capable of handling highly diverse MS data. In this study, we analyzed the requirements for assembling such generalizable deep learning models by systemcally varying the composition and size of the training set. We assessed the generated models' performances using two test sets composed of peptides originating from the multienzyme digestion of samples from various species. The peptide recall values on the test sets showed that the deep learning models generated from a collection of highly N- and C-termini diverse peptides generalized 76% more over the termini-restricted ones. Moreover, expanding the training set's size by adding peptides from the multienzymatic digestion with five proteases of several species samples led to a 2-3 fold generalizability gain. Furthermore, we tested the applicability of these multienzyme deep learning (MEM) models by fully de novo sequencing the heavy and light monomeric chains of five commercial antibodies (mAbs). MEMs extracted over 10000 matching and overlapped peptides across six different proteases mAb samples, achieving a 100% sequence coverage for 8 of the ten polypeptide chains. We foretell that the MEMs' proven improvements to de novo analysis will positively impact several applications, such as analyzing samples of high complexity, unknown nature, or the peptidomics field.


Subject(s)
Deep Learning , Proteomics , Proteomics/methods , Tandem Mass Spectrometry/methods , Peptides/chemistry , Sequence Analysis, Protein/methods , Peptide Hydrolases , Antibodies, Monoclonal
7.
Infect Immun ; 90(2): e0046221, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34898252

ABSTRACT

Sepsis is a life-threatening complication of infection that is characterized by a dysregulated inflammatory state and disturbed hemostasis. Platelets are the main regulators of hemostasis, and they also respond to inflammation. The human pathogen Streptococcus pyogenes can cause local infection that may progress to sepsis. There are more than 200 serotypes of S. pyogenes defined according to sequence variations in the M protein. The M1 serotype is among 10 serotypes that are predominant in invasive infection. M1 protein can be released from the surface and has previously been shown to generate platelet, neutrophil, and monocyte activation. The platelet-dependent proinflammatory effects of other serotypes of M protein associated with invasive infection (M3, M5, M28, M49, and M89) are now investigated using a combination of multiparameter flow cytometry, enzyme-linked immunosorbent assay (ELISA), aggregometry, and quantitative mass spectrometry. We demonstrate that only M1, M3, and M5 protein serotypes can bind fibrinogen in plasma and mediate fibrinogen- and IgG-dependent platelet activation and aggregation, release of granule proteins, upregulation of CD62P to the platelet surface, and complex formation with neutrophils and monocytes. Neutrophil and monocyte activation, determined as upregulation of surface CD11b, is also mediated by M1, M3, and M5 protein serotypes, while M28, M49, and M89 proteins failed to mediate activation of platelets or leukocytes. Collectively, our findings reveal novel aspects of the immunomodulatory role of fibrinogen acquisition and platelet activation during streptococcal infections.


Subject(s)
Sepsis , Streptococcal Infections , Fibrinogen/metabolism , Humans , Platelet Activation , Serogroup , Streptococcal Infections/metabolism , Streptococcus pyogenes/metabolism
8.
Bioinformatics ; 37(24): 4871-4872, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34128979

ABSTRACT

SUMMARY: Protein-protein interactions (PPIs) are central in many biological processes but difficult to characterize, especially in complex, unfractionated samples. Chemical cross-linking combined with mass spectrometry (MS) and computational modeling is gaining recognition as a viable tool in protein interaction studies. Here, we introduce Cheetah-MS, a web server for predicting the PPIs in a complex mixture of samples. It combines the capability and sensitivity of MS to analyze complex samples with the power and resolution of protein-protein docking. It produces the quaternary structure of the PPI of interest by analyzing tandem MS/MS data (also called MS2). Combining MS analysis and modeling increases the sensitivity and, importantly, facilitates the interpretation of the results. AVAILABILITY AND IMPLEMENTATION: Cheetah-MS is freely available as a web server at https://www.txms.org.


Subject(s)
Acinonyx , Animals , Acinonyx/metabolism , Tandem Mass Spectrometry , Computers , Proteins/chemistry , Computer Simulation
9.
PLoS Comput Biol ; 17(1): e1008169, 2021 01.
Article in English | MEDLINE | ID: mdl-33411763

ABSTRACT

Streptococcus pyogenes (Group A streptococcus; GAS) is an important human pathogen responsible for mild to severe, life-threatening infections. GAS expresses a wide range of virulence factors, including the M family proteins. The M proteins allow the bacteria to evade parts of the human immune defenses by triggering the formation of a dense coat of plasma proteins surrounding the bacteria, including IgGs. However, the molecular level details of the M1-IgG interaction have remained unclear. Here, we characterized the structure and dynamics of this interaction interface in human plasma on the surface of live bacteria using integrative structural biology, combining cross-linking mass spectrometry and molecular dynamics (MD) simulations. We show that the primary interaction is formed between the S-domain of M1 and the conserved IgG Fc-domain. In addition, we show evidence for a so far uncharacterized interaction between the A-domain and the IgG Fc-domain. Both these interactions mimic the protein G-IgG interface of group C and G streptococcus. These findings underline a conserved scavenging mechanism used by GAS surface proteins that block the IgG-receptor (FcγR) to inhibit phagocytic killing. We additionally show that we can capture Fab-bound IgGs in a complex background and identify XLs between the constant region of the Fab-domain and certain regions of the M1 protein engaged in the Fab-mediated binding. Our results elucidate the M1-IgG interaction network involved in inhibition of phagocytosis and reveal important M1 peptides that can be further investigated as future vaccine targets.


Subject(s)
Antigens, Bacterial , Bacterial Outer Membrane Proteins , Carrier Proteins , Immunoglobulin G , Streptococcus pyogenes , Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Host-Pathogen Interactions , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Mass Spectrometry , Molecular Dynamics Simulation , Phagocytosis , Protein Binding , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/metabolism , Virulence Factors/chemistry , Virulence Factors/metabolism
10.
Anal Chem ; 93(8): 3929-3937, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33592145

ABSTRACT

We report a new design of an acoustophoretic trapping device with significantly increased capacity and throughput, compared to current commercial acoustic trapping systems. Acoustic trapping enables nanoparticle and extracellular vesicle (EV) enrichment without ultracentrifugation. Current commercial acoustic trapping technology uses an acoustic single-node resonance and typically operates at flow rates <50 µL/min, which limits the processing of the larger samples. Here, we use a larger capillary that supports an acoustic multinode resonance, which increased the seed particle capacity 40 times and throughput 25-40 times compared to single-node systems. The resulting increase in capacity and throughput was demonstrated by isolation of nanogram amounts of microRNA from acoustically trapped urinary EVs within 10 min. Additionally, the improved trapping performance enabled isolation of extracellular vesicles for downstream mass spectrometry analysis. This was demonstrated by the differential protein abundance profiling of urine samples (1-3 mL), derived from the non-trapped versus trapped urine samples.


Subject(s)
Cell-Derived Microparticles , Extracellular Vesicles , MicroRNAs , Acoustics , Proteomics
11.
Med Microbiol Immunol ; 209(3): 265-275, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32072248

ABSTRACT

A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.


Subject(s)
Host Microbial Interactions , Models, Molecular , Protein Interaction Mapping , Proteomics , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Humans , Mass Spectrometry , Protein Interaction Maps , Protein Structure, Quaternary
12.
Med Microbiol Immunol ; 209(3): 277-299, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31784893

ABSTRACT

The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by "anti-ligands" to prevent colonization or infection of the host. Future development of such "anti-ligands" (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.


Subject(s)
Adhesins, Bacterial/physiology , Bacterial Adhesion , Extracellular Matrix Proteins/physiology , Fibronectins/physiology , Gram-Negative Bacteria/physiology , Host Microbial Interactions , Gram-Negative Bacteria/pathogenicity , Humans
13.
Mol Cell Proteomics ; 16(4 suppl 1): S29-S41, 2017 04.
Article in English | MEDLINE | ID: mdl-28183813

ABSTRACT

Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Blood Proteins/metabolism , Carrier Proteins/metabolism , Mass Spectrometry/methods , Proteomics/methods , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Host-Pathogen Interactions , Humans , Isotope Labeling , Membrane Proteins/metabolism , Models, Molecular , Protein Binding , Protein Interaction Maps , Streptococcus pyogenes/metabolism
14.
J Proteome Res ; 17(1): 600-617, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29160079

ABSTRACT

Streptococcus pyogenes is a major global health burden causing a wide variety of diseases. Because a vaccine against this bacterium is still lacking, vaccine candidates or antimicrobial therapies are urgently needed. Here we use an invasive and clinically relevant streptococcal M1 serotype to characterize the bacterial proteome in-depth. An elaborate fractionation technique is employed to separate the different cell fractions, followed by shotgun mass-spectrometry analysis, allowing us to confirm the expression of nearly two-thirds (1022) of the 1690 open reading frames predicted for the streptococcal M1 reference proteome. In contrast with other studies, we present the entire isolated membrane proteome, which opens up a whole new source for drug targets. We show both the unique and most prevalent proteins for each cellular fraction and analyze the presence of predicted cell-wall-anchored proteins and lipoproteins. With our approach, we also identify a variety of novel proteins whose presence has not been reported in previous proteome studies. Proteins of interest, potential virulence factors, and drug or vaccine targets are discussed for each cellular fraction. Overall, the results of this work represent the so-far widest proteomic approach to characterize the protein composition and localization in S. pyogenes.


Subject(s)
Proteome/analysis , Streptococcus pyogenes/chemistry , Bacterial Proteins/analysis , Mass Spectrometry/methods , Membrane Proteins/analysis , Subcellular Fractions/chemistry
15.
Appl Environ Microbiol ; 82(17): 5340-53, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27342557

ABSTRACT

UNLABELLED: Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE: Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of elucidating the host cell receptors required for infection. Our research further expands the repertoire of phages available for consideration as potential antimicrobial agents or as diagnostic tools for this important bacterial pathogen.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophages/physiology , Host Specificity , Porins/metabolism , Receptors, Virus/metabolism , Yersinia enterocolitica/virology , Bacterial Proteins/genetics , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Genome, Viral , Humans , Phylogeny , Porins/genetics , Receptors, Virus/genetics , Temperature , Virus Replication , Yersinia Infections/microbiology , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism
16.
J Proteome Res ; 14(11): 4704-13, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26452057

ABSTRACT

Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , DNA-Binding Proteins/chemistry , Lymphokines/chemistry , Peptide Library , Single-Chain Antibodies/chemistry , Suppressor Factors, Immunologic/chemistry , Virulence Factors/chemistry , Amino Acid Sequence , Antibody Affinity , Antibody Specificity , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/immunology , Chromatography, Liquid , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Epitope Mapping , Gene Expression , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Lymphokines/genetics , Lymphokines/immunology , Molecular Sequence Data , Protein Binding , Reagent Kits, Diagnostic , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/immunology , Suppressor Factors, Immunologic/genetics , Suppressor Factors, Immunologic/immunology , Tandem Mass Spectrometry/methods , Virulence Factors/genetics , Virulence Factors/immunology
17.
J Biol Chem ; 289(26): 18175-88, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24825900

ABSTRACT

Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism , Virulence Factors/chemistry , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Crystallography, X-Ray , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Mice , Models, Molecular , Protein Binding , Protein Structure, Secondary , Streptococcal Infections/metabolism , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity , Virulence , Virulence Factors/genetics
18.
J Virol ; 87(15): 8388-98, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23698307

ABSTRACT

Biochemical reactions powered by ATP hydrolysis are fundamental for the movement of molecules and cellular structures. One such reaction is the encapsidation of the double-stranded DNA (dsDNA) genome of an icosahedrally symmetric virus into a preformed procapsid with the help of a genome-translocating NTPase. Such NTPases have been characterized in detail from both RNA and tailed DNA viruses. We present four crystal structures and the biochemical activity of a thermophilic NTPase, B204, from the nontailed, membrane-containing, hyperthermoacidophilic archaeal dsDNA virus Sulfolobus turreted icosahedral virus 2. These are the first structures of a genome-packaging NTPase from a nontailed, dsDNA virus with an archaeal host. The four structures highlight the catalytic cycle of B204, pinpointing the molecular movement between substrate-bound (open) and empty (closed) active sites. The protein is shown to bind both single-stranded and double-stranded nucleic acids and to have an optimum activity at 80°C and pH 4.5. The overall fold of B204 places it in the FtsK-HerA superfamily of P-loop ATPases, whose cellular and viral members have been suggested to share a DNA-translocating mechanism.


Subject(s)
Archaeal Viruses/enzymology , Archaeal Viruses/physiology , DNA Packaging , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Sulfolobus/virology , Adenosine Triphosphate/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA, Viral/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Protein Conformation , Temperature
19.
Microorganisms ; 12(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38258026

ABSTRACT

Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.

20.
Thromb Haemost ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37857346

ABSTRACT

BACKGROUND: The underlying mechanisms of thrombosis in Lemierre's syndrome and other septic thrombophlebitis are incompletely understood. Therefore, in this case control study we aimed to generate hypotheses on its pathogenesis by studying the plasma proteome in patients with these conditions. METHODS: All patients with Lemierre's syndrome in the Skåne Region, Sweden, were enrolled prospectively during 2017 to 2021 as cases. Age-matched patients with other severe infections were enrolled as controls. Patient plasma samples were analyzed using label-free data-independent acquisition liquid chromatography tandem mass spectrometry. Differentially expressed proteins in Lemierre's syndrome versus other severe infections were highlighted. Functions of differentially expressed proteins were defined based on a literature search focused on previous associations with thrombosis. RESULTS: Eight patients with Lemierre's syndrome and 15 with other severe infections were compared. Here, 20/449 identified proteins were differentially expressed between the groups. Of these, 14/20 had functions previously associated with thrombosis. Twelve of 14 had a suggested prothrombotic effect in Lemierre's syndrome, whereas 2/14 had a suggested antithrombotic effect. CONCLUSION: Proteins involved in several thrombogenic pathways were differentially expressed in Lemierre's syndrome compared to other severe infections. Among identified proteins, several were associated with endothelial damage, platelet activation, and degranulation, and warrant further targeted studies.

SELECTION OF CITATIONS
SEARCH DETAIL