Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nucleic Acids Res ; 52(D1): D808-D816, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953350

ABSTRACT

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.


Subject(s)
Computational Biology , Eukaryota , Animals , Computational Biology/methods , Invertebrates , Databases, Factual
2.
Nucleic Acids Res ; 50(D1): D898-D911, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718728

ABSTRACT

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.


Subject(s)
Databases, Factual , Disease Vectors/classification , Host-Pathogen Interactions/genetics , Phenotype , User-Computer Interface , Animals , Apicomplexa/classification , Apicomplexa/genetics , Apicomplexa/pathogenicity , Bacteria/classification , Bacteria/genetics , Bacteria/pathogenicity , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/pathology , Communicable Diseases/transmission , Computational Biology/methods , Data Mining/methods , Diplomonadida/classification , Diplomonadida/genetics , Diplomonadida/pathogenicity , Fungi/classification , Fungi/genetics , Fungi/pathogenicity , Humans , Insecta/classification , Insecta/genetics , Insecta/pathogenicity , Internet , Nematoda/classification , Nematoda/genetics , Nematoda/pathogenicity , Phylogeny , Virulence , Workflow
3.
Nucleic Acids Res ; 45(D1): D581-D591, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27903906

ABSTRACT

The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.


Subject(s)
Databases, Genetic , Eukaryota , Genomics/methods , Host-Pathogen Interactions/genetics , Metagenome , Metagenomics/methods , Software , Computational Biology/methods , DNA Copy Number Variations , Gene Expression Profiling , Proteomics , Web Browser
4.
Nucleic Acids Res ; 41(Database issue): D684-91, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23175615

ABSTRACT

EuPathDB (http://eupathdb.org) resources include 11 databases supporting eukaryotic pathogen genomic and functional genomic data, isolate data and phylogenomics. EuPathDB resources are built using the same infrastructure and provide a sophisticated search strategy system enabling complex interrogations of underlying data. Recent advances in EuPathDB resources include the design and implementation of a new data loading workflow, a new database supporting Piroplasmida (i.e. Babesia and Theileria), the addition of large amounts of new data and data types and the incorporation of new analysis tools. New data include genome sequences and annotation, strand-specific RNA-seq data, splice junction predictions (based on RNA-seq), phosphoproteomic data, high-throughput phenotyping data, single nucleotide polymorphism data based on high-throughput sequencing (HTS) and expression quantitative trait loci data. New analysis tools enable users to search for DNA motifs and define genes based on their genomic colocation, view results from searches graphically (i.e. genes mapped to chromosomes or isolates displayed on a map) and analyze data from columns in result tables (word cloud and histogram summaries of column content). The manuscript herein describes updates to EuPathDB since the previous report published in NAR in 2010.


Subject(s)
Databases, Genetic , Parasites/genetics , Animals , Genomics , Internet , Molecular Sequence Annotation , Phenotype , Piroplasmida/genetics , Polymorphism, Single Nucleotide , Proteomics , Quantitative Trait Loci , RNA Splice Sites , Sequence Analysis, RNA , Software
5.
Nucleic Acids Res ; 40(Database issue): D675-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22064857

ABSTRACT

FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal 'Zygomycete' lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.


Subject(s)
Databases, Genetic , Genome, Fungal , Genomics , Molecular Sequence Annotation , Software , Systems Integration
6.
Nucleic Acids Res ; 40(Database issue): D98-108, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22116062

ABSTRACT

GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms.


Subject(s)
Databases, Genetic , Genomics , Molecular Sequence Annotation , Animals , Arthropods/genetics , Genome, Bacterial , Genome, Helminth , Genome, Protozoan , Internet , Vocabulary, Controlled
7.
Methods Mol Biol ; 2802: 573-586, 2024.
Article in English | MEDLINE | ID: mdl-38819572

ABSTRACT

The Eukaryotic Pathogen, Vector and Host Informatics Resources ( VEuPathDB.org ) provide free online access to omic data from eukaryotic protozoan and fungal pathogens, arthropod vectors of disease, and host responses to pathogen infection. The goal of VEuPathDB is to make data easily accessible, findable, and importantly, re-usable by laboratory scientists. All integrated data and analyses follow standard workflows and methods to ensure data accuracy and enable data interoperability. Integrated data include genomes and annotation, transcriptomic (e.g., single-cell/bulk RNA-sequence and microarray data), proteomic (e.g., mass spectrometry evidence and quantitative data), isolate sequencing data used for variant calling and copy number variation determination, epigenomics, whole-genome phenotyping data (e.g., CRISPR screens and large-scale imaging and subcellular localization data), etc. Standard analyses provide additional data such as InterPro domains, signal peptide and transmembrane domain predictions, and metabolic pathways. Comparative genomic analysis in VEuPathDB is facilitated by leveraging orthology to enable the transformation of results between organisms and identifying genes with specific phyletic patterns. In addition, synteny between genomes is facilitated by shading orthologs across species and strains. Accessibility to and re-usability of the data is made possible through specialized searches and a graphical search strategy system that enables scientists to build in silico experiments combining results from multiple experiments with diverse data types.


Subject(s)
Computational Biology , Computational Biology/methods , Genomics/methods , Proteomics/methods , Software , Animals , Databases, Genetic , Humans , Host-Pathogen Interactions/genetics , Internet
8.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38529759

ABSTRACT

FungiDB (https://fungidb.org) serves as a valuable online resource that seamlessly integrates genomic and related large-scale data for a wide range of fungal and oomycete species. As an integral part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org), FungiDB continually integrates both published and unpublished data addressing various aspects of fungal biology. Established in early 2011, the database has evolved to support 674 datasets. The datasets include over 300 genomes spanning various taxa (e.g. Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, as well as Albuginales, Peronosporales, Pythiales, and Saprolegniales). In addition to genomic assemblies and annotation, over 300 extra datasets encompassing diverse information, such as expression and variation data, are also available. The resource also provides an intuitive web-based interface, facilitating comprehensive approaches to data mining and visualization. Users can test their hypotheses and navigate through omics-scale datasets using a built-in search strategy system. Moreover, FungiDB offers capabilities for private data analysis via the integrated VEuPathDB Galaxy platform. FungiDB also permits genome improvements by capturing expert knowledge through the User Comments system and the Apollo genome annotation editor for structural and functional gene curation. FungiDB facilitates data exploration and analysis and contributes to advancing research efforts by capturing expert knowledge for fungal and oomycete species.


Subject(s)
Computational Biology , Databases, Genetic , Fungi , Internet , Oomycetes , Oomycetes/genetics , Fungi/genetics , Computational Biology/methods , Genome, Fungal , Genomics/methods , Software
9.
Nucleic Acids Res ; 39(Database issue): D612-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20974635

ABSTRACT

AmoebaDB (http://AmoebaDB.org) and MicrosporidiaDB (http://MicrosporidiaDB.org) are new functional genomic databases serving the amoebozoa and microsporidia research communities, respectively. AmoebaDB contains the genomes of three Entamoeba species (E. dispar, E. invadens and E. histolityca) and microarray expression data for E. histolytica. MicrosporidiaDB contains the genomes of Encephalitozoon cuniculi, E. intestinalis and E. bieneusi. The databases belong to the National Institute of Allergy and Infectious Diseases (NIAID) funded EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center family of integrated databases and assume the same architectural and graphical design as other EuPathDB resources such as PlasmoDB and TriTrypDB. Importantly they utilize the graphical strategy builder that affords a database user the ability to ask complex multi-data-type questions with relative ease and versatility. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs, protein characteristics, phylogenetic relationships and functional data such as transcript (microarray and EST evidence) and protein expression data. Search strategies can be saved within a user's profile for future retrieval and may also be shared with other researchers using a unique strategy web address.


Subject(s)
Databases, Genetic , Encephalitozoon/genetics , Entamoeba/genetics , Genome, Fungal , Genome, Protozoan , Genomics
10.
PLoS Negl Trop Dis ; 17(1): e0011058, 2023 01.
Article in English | MEDLINE | ID: mdl-36656904

ABSTRACT

Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.


Subject(s)
Kinetoplastida , Software , User-Computer Interface , Proteomics , Genomics/methods , Computational Biology/methods , Databases, Genetic , Internet
11.
Nat Microbiol ; 8(5): 845-859, 2023 05.
Article in English | MEDLINE | ID: mdl-37055610

ABSTRACT

Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.


Subject(s)
Babesia , Babesiosis , Ticks , Animals , Humans , Mice , Babesia/genetics , Babesiosis/drug therapy , Multiomics , Erythrocytes/parasitology
12.
Nucleic Acids Res ; 38(Database issue): D415-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19914931

ABSTRACT

EuPathDB (http://EuPathDB.org; formerly ApiDB) is an integrated database covering the eukaryotic pathogens of the genera Cryptosporidium, Giardia, Leishmania, Neospora, Plasmodium, Toxoplasma, Trichomonas and Trypanosoma. While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all these resources, and the opportunity to leverage orthology for searches across genera. The most recent release of EuPathDB includes updates and changes affecting data content, infrastructure and the user interface, improving data access and enhancing the user experience. EuPathDB currently supports more than 80 searches and the recently-implemented 'search strategy' system enables users to construct complex multi-step searches via a graphical interface. Search results are dynamically displayed as the strategy is constructed or modified, and can be downloaded, saved, revised, or shared with other database users.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Protozoan Infections/parasitology , Protozoan Proteins/genetics , Animals , Computational Biology/trends , Databases, Protein , Genome, Protozoan , Humans , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Protozoan Infections/genetics , Software
13.
Nucleic Acids Res ; 38(Database issue): D457-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843604

ABSTRACT

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. 'User Comments' may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Leishmania/genetics , Trypanosoma/genetics , Animals , Computational Biology/trends , Databases, Protein , Genome, Protozoan , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Protozoan Proteins/genetics , Software , User-Computer Interface
14.
Curr Opin Insect Sci ; 50: 100860, 2022 04.
Article in English | MEDLINE | ID: mdl-34864248

ABSTRACT

VectorBase (VectorBase.org) is part of the VEuPathDB Bioinformatics Resource Center, providing free online access to multi-omics and population biology data, focusing on arthropod vectors and invertebrates of importance to human health. VectorBase includes genomics and functional genomics data from bed bugs, biting midges, body lice, kissing bugs, mites, mosquitoes, sand flies, ticks, tsetse flies, stable flies, house flies, fruit flies, and a snail intermediate host. Tools include the Search Strategy system and MapVEu, enabling users to interrogate and visualize diverse 'omics and population-level data using a graphical interface (no programming experience required). Users can also analyze their own private data, such as transcriptomic sequences, exploring their results in the context of other publicly-available information in the database. Help Desk: help@vectorbase.org.


Subject(s)
Computational Biology , Culicidae , Animals , Genomics , Humans , Invertebrates/genetics , Mosquito Vectors
15.
Nucleic Acids Res ; 37(Database issue): D539-43, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18957442

ABSTRACT

PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories--annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.


Subject(s)
Databases, Genetic , Genome, Protozoan , Plasmodium/genetics , Animals , Genomics , Plasmodium/growth & development , Plasmodium/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/physiology , Transcription, Genetic
16.
Nucleic Acids Res ; 37(Database issue): D526-30, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18824479

ABSTRACT

GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data.


Subject(s)
Databases, Genetic , Giardia lamblia/genetics , Trichomonas vaginalis/genetics , Animals , Genome, Protozoan , Genomics , Software , Systems Integration
17.
Methods Mol Biol ; 2071: 27-47, 2020.
Article in English | MEDLINE | ID: mdl-31758445

ABSTRACT

ToxoDB is a free online resource that provides access to genomic and functional genomic data. All data is made available through an intuitive queryable interface that enables scientists to build in silico experiments and develop testable hypothesis. The resource contains 32 fully sequenced and annotated genomes, with genomic sequence from multiple strains available for variant detection and copy number variation analysis. In addition to genomic sequence data, ToxoDB contains numerous functional genomic datasets including microarray, RNAseq, proteomics, ChIP-seq, and phenotypic data. In addition, results from a number of whole-genome analyses are incorporated including mapping to orthology clusters which allows users to leverage phylogenetic relationships in their analyses. Integration of primary data is made possible through a private galaxy interface and custom export tools that allow users to interrogate their own results in the context of all other data in the database.


Subject(s)
Computational Biology/methods , Genomics/methods , Toxoplasma/genetics , Toxoplasma/metabolism , Chromatin Immunoprecipitation Sequencing , Genome-Wide Association Study , Proteomics/methods
18.
Parasitol Int ; 58(1): 101-5, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19015045

ABSTRACT

Bioinformatics research on Plasmodium falciparum revealed two isoforms of pyruvate kinase: type-I and type-II enzymes. The type-I enzyme shows typical glycolytic properties, while type-II enzyme is involved in fatty acid type-II biosynthesis and has been predicted to localize to the apicoplast with the targeting signal in its N-terminus. The type-I and type-II isoforms have the same evolutionary origin as Toxoplasma gondii isozymes, TgPyKI and TgPyKII, respectively; however, TgPyKII localizes to both the mitochondrion and the apicoplast. Accordingly, we made a recombinant full length of P. falciparum pyruvate kinase type-II protein using a wheat germ cell-free expression system and obtained a specific antibody against the type-II protein. Fluorescent microscopic analysis revealed that P. falciparum type-II enzyme was localized only to the apicoplast, not to the mitochondrion. The data suggest differences in localization and metabolic pathways between P. falciparum and T. gondii pyruvate kinase isoforms.


Subject(s)
Isoenzymes/metabolism , Plasmodium falciparum/enzymology , Plastids/enzymology , Pyruvate Kinase/metabolism , Amino Acid Sequence , Animals , Isoenzymes/chemistry , Isoenzymes/genetics , Microscopy, Fluorescence , Mitochondria/enzymology , Molecular Sequence Data , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , Recombinant Proteins , Sequence Analysis, DNA
19.
Gates Open Res ; 3: 1661, 2019.
Article in English | MEDLINE | ID: mdl-32047873

ABSTRACT

The concept of open data has been gaining traction as a mechanism to increase data use, ensure that data are preserved over time, and accelerate discovery. While epidemiology data sets are increasingly deposited in databases and repositories, barriers to access still remain. ClinEpiDB was constructed as an open-access online resource for clinical and epidemiologic studies by leveraging the extensive web toolkit and infrastructure of the Eukaryotic Pathogen Database Resources (EuPathDB; a collection of databases covering 170+ eukaryotic pathogens, relevant related species, and select hosts) combined with a unified semantic web framework. Here we present an intuitive point-and-click website that allows users to visualize and subset data directly in the ClinEpiDB browser and immediately explore potential associations. Supporting study documentation aids contextualization, and data can be downloaded for advanced analyses. By facilitating access and interrogation of high-quality, large-scale data sets, ClinEpiDB aims to spur collaboration and discovery that improves global health.

20.
Methods Mol Biol ; 1757: 69-113, 2018.
Article in English | MEDLINE | ID: mdl-29761457

ABSTRACT

Fighting infections and developing novel drugs and vaccines requires advanced knowledge of pathogen's biology. Readily accessible genomic, functional genomic, and population data aids biological and translational discovery. The Eukaryotic Pathogen Database Resources ( http://eupathdb.org ) are data mining resources that support hypothesis driven research by facilitating the discovery of meaningful biological relationships from large volumes of data. The resource encompasses 13 sites that support over 170 species including pathogenic protists, oomycetes, and fungi as well as evolutionarily related nonpathogenic species. EuPathDB integrates preanalyzed data with advanced search capabilities, data visualization, analysis tools and a comprehensive record system in a graphical interface that does not require prior computational skills. This chapter describes guiding concepts common across EuPathDB sites and illustrates the powerful data mining capabilities of some of the available tools and features.


Subject(s)
Databases, Genetic , Genomics , Parasites/genetics , Animals , Computational Biology/methods , Data Mining , Eukaryotic Cells , Genome, Protozoan , Genomics/methods , Metabolic Networks and Pathways , Parasites/metabolism , Proteomics/methods , Software , Transcriptome , User-Computer Interface , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL