Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Publication year range
1.
Cell ; 183(5): 1185-1201.e20, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33242417

ABSTRACT

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.


Subject(s)
Genomics , Mitochondria/pathology , Space Flight , Stress, Physiological , Animals , Circadian Rhythm , Extracellular Matrix/metabolism , Humans , Immunity, Innate , Lipid Metabolism , Metabolic Flux Analysis , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscles/immunology , Organ Specificity , Smell/physiology
2.
Brain Behav Immun ; 118: 210-220, 2024 May.
Article in English | MEDLINE | ID: mdl-38452987

ABSTRACT

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.


Subject(s)
Gray Matter , Heroin , Humans , Rats , Animals , Heroin/adverse effects , Microglia , Longitudinal Studies , Brain , Magnetic Resonance Imaging
3.
Environ Sci Technol ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255065

ABSTRACT

The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing. Using a combination of wide-field fluorescence microscopy, He-ion microscopy, and confocal µ-Raman spectroscopy, we revealed that disposable masks (DMs) released microfibers ranging from 18 to 3042 microfiber/piece, whereas WMs released 6.1 × 104-6.7 × 106 microfibers/piece depending on the simulated conditions above. Another noteworthy finding was the observed negative correlation between microfiber release and the proportion of reinforcement (embossing) on the DM surfaces. Microfibers from tested DMs primarily comprised polypropylene (PP), while WMs predominantly released poly(ethylene terephthalate) (PET) and cellulose microfibers. Furthermore, acute toxicological analyses unveiled that PP microfibers (0.01-50 mg/L) from DMs impacted zebrafish larval swimming behavior, while PET microfibers from WMs delayed early-stage zebrafish hatching. This study offers new insights into the source of microfiber contamination and raises concerns about the environmental implications linked to the use of washable face masks.

4.
Stat Med ; 42(28): 5266-5284, 2023 12 10.
Article in English | MEDLINE | ID: mdl-37715500

ABSTRACT

In recent years, comprehensive cancer genomics platforms, such as The Cancer Genome Atlas (TCGA), provide access to an enormous amount of high throughput genomic datasets for each patient, including gene expression, DNA copy number alterations, DNA methylation, and somatic mutation. While the integration of these multi-omics datasets has the potential to provide novel insights that can lead to personalized medicine, most existing approaches only focus on gene-level analysis and lack the ability to facilitate biological findings at the pathway-level. In this article, we propose Bayes-InGRiD (Bayesian Integrative Genomics Robust iDentification of cancer subgroups), a novel pathway-guided Bayesian sparse latent factor model for the simultaneous identification of cancer patient subgroups (clustering) and key molecular features (variable selection) within a unified framework, based on the joint analysis of continuous, binary, and count data. By utilizing pathway (gene set) information, Bayes-InGRiD does not only enhance the accuracy and robustness of cancer patient subgroup and key molecular feature identification, but also promotes biological understanding and interpretation. Finally, to facilitate an efficient posterior sampling, an alternative Gibbs sampler for logistic and negative binomial models is proposed using Pólya-Gamma mixtures of normal to represent latent variables for binary and count data, which yields a conditionally Gaussian representation of the posterior. The R package "INGRID" implementing the proposed approach is currently available in our research group GitHub webpage (https://dongjunchung.github.io/INGRID/).


Subject(s)
Genomics , Neoplasms , Humans , Bayes Theorem , Neoplasms/genetics , Models, Statistical , DNA Methylation
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902274

ABSTRACT

Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.


Subject(s)
Constipation , Hemerocallis , Laxatives , Animals , Mice , Constipation/therapy , Gastrointestinal Microbiome , Hemerocallis/chemistry , Network Pharmacology , RNA, Ribosomal, 16S , Laxatives/chemistry , Laxatives/pharmacology , Laxatives/therapeutic use , Cecum/drug effects
6.
Ann Rheum Dis ; 81(2): 268-277, 2022 02.
Article in English | MEDLINE | ID: mdl-34750102

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS: Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS: Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.


Subject(s)
Fibroblasts/pathology , Gene Expression Regulation/physiology , Kruppel-Like Factor 4/metabolism , Scleroderma, Systemic , Skin/pathology , Cells, Cultured , Fibroblasts/metabolism , Humans , Kruppel-Like Factor 4/genetics , MicroRNAs/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/metabolism , T-Box Domain Proteins/metabolism , Transcription Factor AP-2/metabolism , Transcriptome
7.
J Mol Cell Cardiol ; 154: 6-20, 2021 05.
Article in English | MEDLINE | ID: mdl-33516683

ABSTRACT

Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.


Subject(s)
Aortic Valve Stenosis/metabolism , Aortic Valve/metabolism , Glycomics , Glycoproteins/metabolism , Aortic Valve Stenosis/congenital , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/physiopathology , Biomarkers , Child , Extracellular Matrix/metabolism , Genetic Predisposition to Disease , Glycomics/methods , Glycosylation , Humans , Molecular Imaging , Polysaccharides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Nat Prod ; 84(11): 3001-3007, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34677966

ABSTRACT

The pressing need for SARS-CoV-2 controls has led to a reassessment of strategies to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. This review article addresses how contemporary approaches involving computational chemistry, natural product (NP) and protein databases, and mass spectrometry (MS) derived target-ligand interaction analysis can be utilized to expedite the interrogation of NP structures while minimizing the time and expense of extraction, purification, and screening in BioSafety Laboratories (BSL)3 laboratories. The unparalleled structural diversity and complexity of NPs is an extraordinary resource for the discovery and development of broad-spectrum inhibitors of viral genera, including Betacoronavirus, which contains MERS, SARS, SARS-CoV-2, and the common cold. There are two key technological advances that have created unique opportunities for the identification of NP prototypes with greater efficiency: (1) the application of structural databases for NPs and target proteins and (2) the application of modern MS techniques to assess protein-ligand interactions directly from NP extracts. These approaches, developed over years, now allow for the identification and isolation of unique antiviral ligands without the immediate need for BSL3 facilities. Overall, the goal is to improve the success rate of NP-based screening by focusing resources on source materials with a higher likelihood of success, while simultaneously providing opportunities for the discovery of novel ligands to selectively target proteins involved in viral infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Biological Products/pharmacology , Drug Discovery , Computational Biology , Databases, Chemical , Databases, Protein , Ligands , Mass Spectrometry , Protein Interaction Mapping , SARS-CoV-2/drug effects
9.
Nature ; 519(7541): 57-62, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25731159

ABSTRACT

Inflammation promotes regeneration of injured tissues through poorly understood mechanisms, some of which involve interleukin (IL)-6 family members, the expression of which is elevated in many diseases including inflammatory bowel diseases and colorectal cancer. Here we show in mice and human cells that gp130, a co-receptor for IL-6 cytokines, triggers activation of YAP and Notch, transcriptional regulators that control tissue growth and regeneration, independently of the gp130 effector STAT3. Through YAP and Notch, intestinal gp130 signalling stimulates epithelial cell proliferation, causes aberrant differentiation and confers resistance to mucosal erosion. gp130 associates with the related tyrosine kinases Src and Yes, which are activated on receptor engagement to phosphorylate YAP and induce its stabilization and nuclear translocation. This signalling module is strongly activated upon mucosal injury to promote healing and maintain barrier function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytokine Receptor gp130/metabolism , Epithelial Cells/cytology , Inflammation/metabolism , Intestinal Mucosa/cytology , Phosphoproteins/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Regeneration , Animals , Body Weight , Cell Cycle Proteins , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Enzyme Activation , Epithelial Cells/metabolism , Epithelial Cells/pathology , HEK293 Cells , Homeostasis , Humans , Inflammation/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Proto-Oncogene Proteins c-yes/metabolism , Receptors, Notch/metabolism , Signal Transduction , Up-Regulation , YAP-Signaling Proteins
10.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502375

ABSTRACT

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Weightlessness/adverse effects , Animals , Caenorhabditis elegans , Circadian Rhythm/physiology , Databases, Genetic , Drosophila melanogaster , Extraterrestrial Environment , Gene Expression/genetics , Gene Expression Profiling/methods , Hindlimb Suspension , Mice , Models, Animal , Space Flight , Stress, Physiological/physiology , Transcriptome/genetics
11.
J Biol Chem ; 294(23): 9198-9212, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30971427

ABSTRACT

Adoptive transfer of tumor epitope-reactive T cells has emerged as a promising strategy to control tumor growth. However, chronically-stimulated T cells expanded for adoptive cell transfer are susceptible to cell death in an oxidative tumor microenvironment. Because oxidation of cell-surface thiols also alters protein functionality, we hypothesized that increasing the levels of thioredoxin (Trx), an antioxidant molecule facilitating reduction of proteins through cysteine thiol-disulfide exchange, in T cells will promote their sustained antitumor function. Using pre-melanosome protein (Pmel)-Trx1 transgenic mouse-derived splenic T cells, flow cytometry, and gene expression analysis, we observed here that higher Trx expression inversely correlated with reactive oxygen species and susceptibility to T-cell receptor restimulation or oxidation-mediated cell death. These Trx1-overexpressing T cells exhibited a cluster of differentiation 62Lhi (CD62Lhi) central memory-like phenotype with reduced glucose uptake (2-NBDGlo) and decreased effector function (interferon γlo). Furthermore, culturing tumor-reactive T cells in the presence of recombinant Trx increased the dependence of T cells on mitochondrial metabolism and improved tumor control. We conclude that strategies for increasing the antioxidant capacity of antitumor T cells modulate their immunometabolic phenotype leading to improved immunotherapeutic control of established tumors.


Subject(s)
T-Lymphocytes/metabolism , Thioredoxins/metabolism , Animals , Antioxidants/metabolism , Cell Line, Tumor , Glucose Transporter Type 1/metabolism , L-Selectin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Oxidative Stress , Phenotype , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thioredoxins/genetics , Tumor Microenvironment , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/metabolism
12.
Curr Genomics ; 20(4): 260-274, 2019 May.
Article in English | MEDLINE | ID: mdl-32030086

ABSTRACT

Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wild-life and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and dis-rupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study. METHODOLOGY: In this study, healthy primary human prostate epithelial cells (PrECs) were exposed to environmentally relevant concentrations of BPA (5nM and 25nM BPA) and interrogated using a whole genome microarray. RESULTS: Exposure to 5 and 25nM BPA resulted in 7,182 and 7,650 differentially expressed (DE) genes, respectively in treated PrECs. Exposure to EE2 had the greatest effect on the PrEC transcriptome (8,891 DE genes). CONCLUSION: We dissected and investigated the nature of the non-estrogenic gene signature associated with BPA with a focus on transcripts relevant to epigenetic modifications. The expression of transcripts encoding nuclear hormone receptors as well as histone and DNA methylation, modifying enzymes were significantly perturbed by exposure to BPA.

13.
Gen Comp Endocrinol ; 271: 1-14, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30563618

ABSTRACT

Nonylphenol (NP) arises from the environmental degradation of nonylphenol ethoxylates. It is a ubiquitous environmental contaminant and has been detected at levels up to 167 nM in rivers in the United States. NP is an endocrine disruptor (ED) that can act as an agonist for estrogen receptors. The Adverse Outcome Pathway (AOP) framework defines an adverse outcome as the causal result of a series of molecular initiating events (MIEs) and key events (KEs) that lead to altered phenotypes. This study examined the liver transcriptome after a 21 day exposure to NP and 17ß-estradiol (E2) by exploiting the zebrafish (Danio rerio) as a systems toxicology model. The goal of this study was to tease out non-estrogenic genomic signatures associated with NP exposure using DNA microarray and RNA sequencing. Our experimental design included E2 as a positive and potent estrogenic control in order to effectively compare and contrast the 2 compounds. This approach allowed us to identify hepatic transcriptomic perturbations that could serve as MIEs for adverse health outcomes in response to NP. Our results revealed that exposure to NP was associated with differential expression (DE) of genes associated with the development of steatosis, disruption of metabolism, altered immune response, and metabolism of reactive oxygen species, further highlighting NP as a chemical of emerging concern (CEC).


Subject(s)
Aging/genetics , Liver/metabolism , Phenols/toxicity , Surface-Active Agents/toxicity , Systems Analysis , Transcriptome/genetics , Zebrafish/genetics , Animals , Fatty Acids/metabolism , Humans , Insulin/metabolism , Male , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Zebrafish/metabolism
14.
Sleep Breath ; 23(1): 251-257, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29968150

ABSTRACT

PURPOSE: There are currently no biomarkers that are associated with cognitive impairment (CI) in patients with obstructive sleep apnea syndrome (OSAS). This pilot study performed an exploratory plasma proteomic analysis to discover potential biomarkers and explore proteomic pathways that differentiate OSAS subjects with and without CI. METHODS: Participants were selected from a cohort of women within 5 years of menopause not on hormone replacement therapy between the ages of 45-60 years. The Berlin questionnaire was used to select OSAS participants who then completed the MCFSI (Mail-In Cognitive Function Screening Instrument) to measure cognition. Six subjects with the highest MCFSI scores (≥ 5 denoting CI) were compared to six with normal scores. Proteomic analysis was done by Myriad RBM using a targeted ELISA for 254 serum proteins. Pathway analysis of differentially expressed proteins was performed using STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) software. RESULTS: Distinct proteomic signatures were seen in OSAS subjects with CI as compared to those without CI. Proteins including insulin, prostasin, angiopoietin-1, plasminogen activator inhibitor 1, and interleukin-1 beta were overexpressed in OSAS subjects with CI. Proteins underexpressed in CI participants included cathepsin B, ceruloplasmin, and adiponectin. Pathway analysis revealed prominence of insulin-regulated vascular disease biomarkers. CONCLUSIONS: Proteomic biomarkers in participants with cognitive impairment suggest roles for insulin, and vascular signaling pathways, some of which are similar to findings in Alzheimer's disease. A better understanding of the pathogenic mechanisms of CI in OSAS will help focus clinical trials needed in this patient population.


Subject(s)
Biomarkers/blood , Blood Proteins/metabolism , Cognitive Dysfunction/diagnosis , Proteomics , Sleep Apnea, Obstructive/diagnosis , Adiponectin/blood , Angiopoietin-1/blood , Cathepsin B/blood , Ceruloplasmin/metabolism , Cognitive Dysfunction/blood , Cohort Studies , Female , Humans , Insulin/blood , Interleukin-1beta/blood , Middle Aged , Neuropsychological Tests , Plasminogen Activator Inhibitor 1/blood , Reference Values , Serine Endopeptidases/blood , Sleep Apnea, Obstructive/blood
15.
Curr Genomics ; 19(7): 615-629, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30386173

ABSTRACT

BACKGROUND: Cellular homeostasis is regulated by the intricate interplay between a plethora of signaling pathways and "energetic sensors" in organs. In order to maintain energy balance, induction or repression of metabolic pathways must be regulated and act in concert with the energetic demands of the cell at a given point in time. A new class of small noncoding RNAs, the microRNAs (miRNAs), has added yet further complexity to the control of metabolic homeostasis. OBJECTIVE: Understanding the damages induced by toxins in the liver and the intestine as well as the interplay between the miRNome and transcriptome first requires baseline characterization in these tissues in healthy animals under cellular homeostasis. METHODS: The liver (main site for detoxification) and the gut (primary exposure routes for contaminant exposure) were dissected out (wildtype fish), total and small RNA extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing. Differential Expression (DE) analysis was performed comparing liver with gut and an "miRNA matrix" that integrates the miRNA-seq and mRNA-seq data was constructed. RESULTS: Both the miRNome and transcriptome of the liver and gut tissues were characterized and putative novel miRNAs were identified. Exploration of the "miRNA matrix" regulatory network revealed that miRNAs uniquely expressed in the liver or gut tissue regulated fundamental cellular processes important for both organs, and that commonly expressed miRNAs in both tissues regulated biological processes that were specific to either the liver or the gut. CONCLUSION: The result of our analyses revealed new insights into microRNA function in these tissues.

16.
Gen Comp Endocrinol ; 265: 64-70, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29339181

ABSTRACT

Atlantic Bluefin Tuna Thunnus thynnus (ABFT) is considered one of the most important socio-economic species but there is a lack of information on the physiological and molecular processes regulating its growth and metabolism. In the present study, we focused on key molecules involved in growth process. The aim of the present study was to associate molecular markers related to growth with canonical procedures like morphological measurements such as curved fork length (CFL) and round weight (RWT). The ABFT specimens (n = 41) were organized into three different groups A, B and C according to their age. The molecular analysis of liver samples revealed that igf1, igf1r and mTOR genes, involved in growth process, were differentially expressed in relation to the age of the fish. In addition, during the analyzed period, faster growth was evident from 5 to 8 years of age, after that, the growth rate decreased in terms of length yet increased in terms of adipose tissue storage, as supported by the higher fat content in the liver. These results are useful in expanding basic knowledge about the metabolic system of ABFT and provide new knowledge for the aquaculture industry.


Subject(s)
Aging/physiology , Tuna/growth & development , Animals , Aquaculture , Female , Gene Expression Regulation, Developmental , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Lipids/chemistry , Liver/metabolism , Male , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tuna/genetics
17.
Environ Sci Technol ; 51(17): 10162-10172, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28768411

ABSTRACT

The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 µg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.


Subject(s)
Abnormalities, Drug-Induced/veterinary , Perciformes , Petroleum Pollution , Petroleum/toxicity , Animals , Computational Biology , Larva , Phenotype , Water Pollutants, Chemical
18.
J Appl Toxicol ; 37(9): 1108-1116, 2017 09.
Article in English | MEDLINE | ID: mdl-28425113

ABSTRACT

Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4+ and CD8+ T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Alkanesulfonic Acids/toxicity , Bottle-Nosed Dolphin/immunology , Environmental Exposure/adverse effects , Fluorocarbons/toxicity , Lymphocyte Activation/drug effects , T-Lymphocytes/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/immunology , T-Lymphocytes/cytology , Water Pollutants, Chemical/toxicity
19.
Genes Dev ; 23(6): 681-93, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19299558

ABSTRACT

Innate immune responses to bacterial or viral infection require rapid transition of large cohorts of inflammatory response genes from poised/repressed to actively transcribed states, but the underlying repression/derepression mechanisms remain poorly understood. Here, we report that, while the nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors establish repression checkpoints on broad sets of inflammatory response genes in macrophages and are required for nearly all of the transrepression activities of liver X receptors (LXRs), they can be selectively recruited via c-Jun or the Ets repressor Tel, respectively, establishing NCoR-specific, SMRT-specific, and NCoR/SMRT-dependent promoters. Unexpectedly, the binding of NCoR and SMRT to NCoR/SMRT-dependent promoters is frequently mutually dependent, establishing a requirement for both proteins for LXR transrepression and enabling inflammatory signaling pathways that selectively target NCoR or SMRT to also derepress/activate NCoR/SMRT-dependent genes. These findings reveal a combinatorial, corepressor-based strategy for integration of inflammatory and anti-inflammatory signals that play essential roles in immunity and homeostasis.


Subject(s)
DNA-Binding Proteins/immunology , Macrophages/immunology , Nuclear Proteins/immunology , Repressor Proteins/immunology , Animals , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Immunity, Innate , Inflammation/immunology , JNK Mitogen-Activated Protein Kinases/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/cytology , Liver/immunology , Liver X Receptors , Mice , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1 , Nuclear Receptor Co-Repressor 2 , Orphan Nuclear Receptors , Protein Binding , Receptors, Cytoplasmic and Nuclear/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
20.
Development ; 140(16): 3360-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23863477

ABSTRACT

Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the ß1 integrin gene in developing pancreatic ß-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking ß1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of ß-cells to only ∼18% of wild-type levels. Despite the significant reduction in ß-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of ß-cells lacking ß1 integrin revealed a normal expression repertoire of ß-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in ß-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that ß1 integrin receptors function as crucial positive regulators of ß-cell expansion.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Developmental , Insulin-Secreting Cells/metabolism , Integrin beta1/metabolism , Animals , Cell Adhesion , Cell Count , Cell Cycle , Cell Differentiation , Cell Membrane/metabolism , Cell Shape , Cells, Cultured , Embryo, Mammalian/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Insulin/genetics , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/ultrastructure , Integrin beta1/genetics , Mice , Mice, Knockout , Microscopy, Electron, Transmission , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL