Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 871
Filter
Add more filters

Publication year range
1.
Cell ; 160(4): 798-798.e1, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25679767

ABSTRACT

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are considered to be part of a spectrum. Clinically, FTD patients present with dementia frequently characterized by behavioral and speech problems. ALS patients exhibit alterations of voluntary movements caused by degeneration of motor neurons. Both syndromes can be present within the same family or even in the same person. The genetic findings for both diseases also support the existence of a continuum, with mutations in the same genes being found in patients with FTD, ALS, or FTD/ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Genome-Wide Association Study , Humans , Mutation
2.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37575021

ABSTRACT

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Microglia , Synapses , Disease Models, Animal , Amyloid beta-Peptides/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
3.
Nature ; 594(7861): 117-123, 2021 06.
Article in English | MEDLINE | ID: mdl-34012113

ABSTRACT

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Subject(s)
Protein Biosynthesis/genetics , Proteostasis/genetics , RNA, Antisense/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Animals , Binding Sites , Brain/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Disease Progression , Female , Humans , Internal Ribosome Entry Sites/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Ribosomes/metabolism , tau Proteins/biosynthesis
4.
PLoS Biol ; 21(6): e3002196, 2023 06.
Article in English | MEDLINE | ID: mdl-37384773

ABSTRACT

The genetics of Parkinson's disease has been key to unravelling the PINK1-dependent mitophagy process. Here, we discuss the implications of a 2010 PLOS Biology paper that shed light on the functional importance of PINK1 in the mitophagy cascade.


Subject(s)
Mitophagy , Parkinson Disease , Humans , Protein Kinases/genetics , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/genetics
5.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37721944

ABSTRACT

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Subject(s)
Multifactorial Inheritance , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genotype , Base Sequence , Genome-Wide Association Study , Polymorphism, Single Nucleotide
6.
Brain ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820112

ABSTRACT

Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: Amyloid (A), Tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, where each of the biomarkers can be either positive (+) or negative (-). Over the past decades genome wide association studies have implicated about 90 different loci involved with the development of late onset Alzheimer's disease. Here we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we employed Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex, and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed significant effect (HR=2.88; 95% CI: 1.70-4.89; P<0.001), while polygenic risk did not (HR=1.09; 95% CI: 0.84-1.42; P=0.53). Conversely, for the transition from A+T- to A+T+, the APOE-e4 burden contribution was reduced (HR=1.62 95% CI: 1.05-2.51; P=0.031), while the polygenic risk showed an increased contribution (HR=1.73; 95% CI:1.27-2.36; P<0.001). The marginal APOE effect was driven by e4 homozygotes (HR=2.58; 95% CI: 1.05-6.35; P=0.039) as opposed to e4 heterozygotes (HR=1.74; 95% CI: 0.87-3.49; P=0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of transition between ATN stages, a better understanding of the molecular processes leading to Alzheimer's disease as well as opening therapeutic windows for targeted interventions.

8.
Cell ; 143(5): 826-36, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21111240

ABSTRACT

The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Golgi Apparatus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Serine Endopeptidases/metabolism , Animals , Cell Line , Cell Separation , Cells, Cultured , Hippocampus/metabolism , Humans , Mice , Rats , Reelin Protein
9.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-36695634

ABSTRACT

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Genome, Human , Whole Genome Sequencing , Genotype
10.
Mov Disord ; 39(3): 486-497, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38197134

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES: Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS: We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS: Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS: These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Pedigree , Spinocerebellar Ataxias/genetics , Cerebellar Ataxia/genetics , Exons , Homeodomain Proteins/genetics
11.
Brain ; 146(2): 690-699, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35383826

ABSTRACT

Plasma biomarkers for Alzheimer's disease-related pathologies have undergone rapid developments during the past few years, and there are now well-validated blood tests for amyloid and tau pathology, as well as neurodegeneration and astrocytic activation. To define Alzheimer's disease with biomarkers rather than clinical assessment, we assessed prediction of research-diagnosed disease status using these biomarkers and tested genetic variants associated with the biomarkers that may reflect more accurately the risk of biochemically defined Alzheimer's disease instead of the risk of dementia. In a cohort of Alzheimer's disease cases [n = 1439, mean age 68 years (standard deviation = 8.2)] and screened controls [n = 508, mean age 82 years (standard deviation = 6.8)], we measured plasma concentrations of the 40 and 42 amino acid-long amyloid-ß (Aß) fragments (Aß40 and Aß42, respectively), tau phosphorylated at amino acid 181 (P-tau181), neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) using state-of-the-art Single molecule array (Simoa) technology. We tested the relationships between the biomarkers and Alzheimer's disease genetic risk, age at onset and disease duration. We also conducted a genome-wide association study for association of disease risk genes with these biomarkers. The prediction accuracy of Alzheimer's disease clinical diagnosis by the combination of all biomarkers, APOE and polygenic risk score reached area under receiver operating characteristic curve (AUC) = 0.81, with the most significant contributors being ε4, Aß40 or Aß42, GFAP and NfL. All biomarkers were significantly associated with age in cases and controls (P < 4.3 × 10-5). Concentrations of the Aß-related biomarkers in plasma were significantly lower in cases compared with controls, whereas other biomarker levels were significantly higher in cases. In the case-control genome-wide analyses, APOE-ε4 was associated with all biomarkers (P = 0.011-4.78 × 10-8), except NfL. No novel genome-wide significant single nucleotide polymorphisms were found in the case-control design; however, in a case-only analysis, we found two independent genome-wide significant associations between the Aß42/Aß40 ratio and WWOX and COPG2 genes. Disease prediction modelling by the combination of all biomarkers indicates that the variance attributed to P-tau181 is mostly captured by APOE-ε4, whereas Aß40, Aß42, GFAP and NfL biomarkers explain additional variation over and above APOE. We identified novel plausible genome wide-significant genes associated with Aß42/Aß40 ratio in a sample which is 50 times smaller than current genome-wide association studies in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Humans , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genome-Wide Association Study , Amyloid beta-Peptides , Biomarkers , Amino Acids/genetics , Apolipoproteins E/genetics , tau Proteins/genetics , Peptide Fragments
12.
Brain ; 146(7): 2869-2884, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36624280

ABSTRACT

Improvements in functional genomic annotation have led to a critical mass of neurogenetic discoveries. This is exemplified in hereditary ataxia, a heterogeneous group of disorders characterised by incoordination from cerebellar dysfunction. Associated pathogenic variants in more than 300 genes have been described, leading to a detailed genetic classification partitioned by age-of-onset. Despite these advances, up to 75% of patients with ataxia remain molecularly undiagnosed even following whole genome sequencing, as exemplified in the 100 000 Genomes Project. This study aimed to understand whether we can improve our knowledge of the genetic architecture of hereditary ataxia by leveraging functional genomic annotations, and as a result, generate insights and strategies that raise the diagnostic yield. To achieve these aims, we used publicly-available multi-omics data to generate 294 genic features, capturing information relating to a gene's structure, genetic variation, tissue-specific, cell-type-specific and temporal expression, as well as protein products of a gene. We studied these features across genes typically causing childhood-onset, adult-onset or both types of disease first individually, then collectively. This led to the generation of testable hypotheses which we investigated using whole genome sequencing data from up to 2182 individuals presenting with ataxia and 6658 non-neurological probands recruited in the 100 000 Genomes Project. Using this approach, we demonstrated a high short tandem repeat (STR) density within childhood-onset genes suggesting that we may be missing pathogenic repeat expansions within this cohort. This was verified in both childhood- and adult-onset ataxia patients from the 100 000 Genomes Project who were unexpectedly found to have a trend for higher repeat sizes even at naturally-occurring STRs within known ataxia genes, implying a role for STRs in pathogenesis. Using unsupervised analysis, we found significant similarities in genomic annotation across the gene panels, which suggested adult- and childhood-onset patients should be screened using a common diagnostic gene set. We tested this within the 100 000 Genomes Project by assessing the burden of pathogenic variants among childhood-onset genes in adult-onset patients and vice versa. This demonstrated a significantly higher burden of rare, potentially pathogenic variants in conventional childhood-onset genes among individuals with adult-onset ataxia. Our analysis has implications for the current clinical practice in genetic testing for hereditary ataxia. We suggest that the diagnostic rate for hereditary ataxia could be increased by removing the age-of-onset partition, and through a modified screening for repeat expansions in naturally-occurring STRs within known ataxia-associated genes, in effect treating these regions as candidate pathogenic loci.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Adult , Humans , Spinocerebellar Degenerations/genetics , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Ataxia/diagnosis , Ataxia/genetics , Genomics , Genetic Testing
13.
Brain ; 146(5): 1873-1887, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36348503

ABSTRACT

Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Parkinson Disease/genetics , Dementia/complications , Cognitive Dysfunction/etiology , Apolipoproteins E/genetics , Biomarkers , Receptors, LDL
14.
Brain ; 146(11): 4622-4632, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37348876

ABSTRACT

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Risk Factors , Gene Frequency , Receptors, Immunologic
15.
Alzheimers Dement ; 20(4): 2469-2484, 2024 04.
Article in English | MEDLINE | ID: mdl-38323937

ABSTRACT

INTRODUCTION: Blood protein biomarkers demonstrate potential for Alzheimer's disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood cells. METHODS: Bulk RNA-sequencing of blood cells was performed on AD patients of Chinese descent (n = 214 and 26 in the discovery and validation cohorts, respectively) with normal controls (n = 208 and 38 in the discovery and validation cohorts, respectively). Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis identified AD-associated gene modules and blood cell types. Regression and unsupervised clustering analysis identified AD-associated genes, gene modules, cell types, and established AD classification models. RESULTS: WGCNA on differentially expressed genes revealed 15 gene modules, with 6 accurately classifying AD (areas under the receiver operating characteristics curve [auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct disease states. Cell-type deconvolution analysis identified specific blood cell types potentially associated with AD pathogenesis. DISCUSSION: This study highlights the potential of blood transcriptome for AD diagnosis, patient stratification, and mechanistic studies. HIGHLIGHTS: We comprehensively analyze the blood transcriptomes of a well-characterized Alzheimer's disease cohort to identify genes, gene modules, pathways, and specific blood cells associated with the disease. Blood transcriptome analysis accurately classifies and stratifies patients with Alzheimer's disease, with some gene modules achieving classification accuracy comparable to that of the plasma ATN biomarkers. Immune-associated pathways and immune cells, such as neutrophils, have potential roles in the pathogenesis and progression of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Transcriptome , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers
16.
Alzheimers Dement ; 20(3): 2000-2015, 2024 03.
Article in English | MEDLINE | ID: mdl-38183344

ABSTRACT

INTRODUCTION: Existing blood-based biomarkers for Alzheimer's disease (AD) mainly focus on its pathological features. However, studies on blood-based biomarkers associated with other biological processes for a comprehensive evaluation of AD status are limited. METHODS: We developed a blood-based, multiplex biomarker assay for AD that measures the levels of 21 proteins involved in multiple biological pathways. We evaluated the assay's performance for classifying AD and indicating AD-related endophenotypes in three independent cohorts from Chinese or European-descent populations. RESULTS: The 21-protein assay accurately classified AD (area under the receiver operating characteristic curve [AUC] = 0.9407 to 0.9867) and mild cognitive impairment (MCI; AUC = 0.8434 to 0.8945) while also indicating brain amyloid pathology. Moreover, the assay simultaneously evaluated the changes of five biological processes in individuals and revealed the ethnic-specific dysregulations of biological processes upon AD progression. DISCUSSION: This study demonstrated the utility of a blood-based, multi-pathway biomarker assay for early screening and staging of AD, providing insights for patient stratification and precision medicine. HIGHLIGHTS: The authors developed a blood-based biomarker assay for Alzheimer's disease. The 21-protein assay classifies AD/MCI and indicates brain amyloid pathology. The 21-protein assay can simultaneously assess activities of five biological processes. Ethnic-specific dysregulations of biological processes in AD were revealed.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Ethnicity , Biomarkers , Amyloid beta-Peptides , tau Proteins , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology
17.
Glia ; 71(4): 1036-1056, 2023 04.
Article in English | MEDLINE | ID: mdl-36571248

ABSTRACT

One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.


Subject(s)
Adverse Childhood Experiences , Glucocorticoids , Microglia , Receptors, Glucocorticoid , Humans , Autism Spectrum Disorder/etiology , Genomic Instability , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Microglia/drug effects , Microglia/physiology , Myeloid Progenitor Cells/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Interferon Type I/metabolism
18.
Neurobiol Dis ; 180: 106082, 2023 05.
Article in English | MEDLINE | ID: mdl-36925053

ABSTRACT

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neanderthals , Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Neanderthals/genetics , Neurodegenerative Diseases/genetics , Selection, Genetic
19.
Mov Disord ; 38(7): 1127-1142, 2023 07.
Article in English | MEDLINE | ID: mdl-37156737

ABSTRACT

BACKGROUND: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Syndrome , Biomarkers , Forecasting , Central Nervous System/pathology
20.
Brain ; 145(12): 4349-4367, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36074904

ABSTRACT

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.


Subject(s)
Mitophagy , Parkinson Disease , Humans , Genome-Wide Association Study , Mitophagy/physiology , Neurodegenerative Diseases , Parkinson Disease/metabolism , Protein Kinases/genetics , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL