Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
Nature ; 629(8014): 1142-1148, 2024 May.
Article in English | MEDLINE | ID: mdl-38588696

ABSTRACT

PARTNER is a prospective, phase II-III, randomized controlled clinical trial that recruited patients with triple-negative breast cancer1,2, who were germline BRCA1 and BRCA2 wild type3. Here we report the results of the trial. Patients (n = 559) were randomized on a 1:1 basis to receive neoadjuvant carboplatin-paclitaxel with or without 150 mg olaparib twice daily, on days 3 to 14, of each of four cycles (gap schedule olaparib, research arm) followed by three cycles of anthracycline-based chemotherapy before surgery. The primary end point was pathologic complete response (pCR)4, and secondary end points included event-free survival (EFS) and overall survival (OS)5. pCR was achieved in 51% of patients in the research arm and 52% in the control arm (P = 0.753). Estimated EFS at 36 months in the research and control arms was 80% and 79% (log-rank P > 0.9), respectively; OS was 90% and 87.2% (log-rank P = 0.8), respectively. In patients with pCR, estimated EFS at 36 months was 90%, and in those with non-pCR it was 70% (log-rank P < 0.001), and OS was 96% and 83% (log-rank P < 0.001), respectively. Neoadjuvant olaparib did not improve pCR rates, EFS or OS when added to carboplatin-paclitaxel and anthracycline-based chemotherapy in patients with triple-negative breast cancer who were germline BRCA1 and BRCA2 wild type. ClinicalTrials.gov ID: NCT03150576 .


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoadjuvant Therapy , Phthalazines , Piperazines , Triple Negative Breast Neoplasms , Adult , Aged , Female , Humans , Middle Aged , Anthracyclines/therapeutic use , Anthracyclines/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carboplatin/administration & dosage , Carboplatin/therapeutic use , Genes, BRCA1 , Genes, BRCA2 , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Pathologic Complete Response , Phthalazines/administration & dosage , Phthalazines/therapeutic use , Piperazines/administration & dosage , Piperazines/therapeutic use , Progression-Free Survival , Prospective Studies , Survival Analysis , Time Factors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/surgery , Adolescent , Young Adult
2.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644507

ABSTRACT

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cell Proliferation , Cells, Cultured , Cluster Analysis , Flow Cytometry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phosphorylation/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
3.
Nat Immunol ; 14(6): 633-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624555

ABSTRACT

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.


Subject(s)
Algorithms , Gene Expression Regulation/immunology , Immune System/metabolism , Transcription, Genetic/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression Profiling , Gene Regulatory Networks/immunology , Humans , Immune System/cytology , Mice , Oligonucleotide Array Sequence Analysis , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Repressor Proteins/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Trans-Activators/genetics , Trans-Activators/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Transcriptome/genetics , Transcriptome/immunology
4.
PLoS Pathog ; 18(3): e1010393, 2022 03.
Article in English | MEDLINE | ID: mdl-35294495

ABSTRACT

Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.


Subject(s)
Aedes , Alphavirus , Arthropods , Flavivirus , Wolbachia , 5-Methylcytosine/metabolism , Alphavirus/genetics , Animals , Arthropods/genetics , Flavivirus/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication , Wolbachia/physiology
5.
Arthroscopy ; 39(8): 1936-1937, 2023 08.
Article in English | MEDLINE | ID: mdl-37400171

ABSTRACT

Although the odds are extremely low, some baseball players are fortunate to make it to the professional ranks (minor or major league), where suffering an injury is common. During the 2011 to 2019 seasons, 112,405 injuries were reported in the Major League Baseball Health and Injury Tracking System database. Compared with other professional sports, baseball players have lower rates of returning to play, take longer to return to play, and have shorter careers after shoulder arthroscopy. By understanding injury epidemiology, the treating physician will gain player trust and understand the prognosis and how to properly return the player safely back to the field and best prolong their career.


Subject(s)
Athletic Injuries , Baseball , Sports , Humans , Baseball/injuries , Trust , Athletes , Athletic Injuries/epidemiology , Return to Sport
6.
PLoS Pathog ; 16(6): e1008513, 2020 06.
Article in English | MEDLINE | ID: mdl-32555677

ABSTRACT

The ability of the endosymbiont Wolbachia pipientis to restrict RNA viruses is presently being leveraged to curb global transmission of arbovirus-induced diseases. Past studies have shown that virus replication is limited early in arthropod cells colonized by the bacterium, although it is unclear if this phenomenon is replicated in mosquito cells that first encounter viruses obtained through a vertebrate blood meal. Furthermore, these cellular events neither explain how Wolbachia limits dissemination of viruses between mosquito tissues, nor how it prevents transmission of infectious viruses from mosquitoes to vertebrate host. In this study, we try to address these issues using an array of mosquito cell culture models, with an additional goal being to identify a common viral target for pathogen blocking. Our results establish the viral RNA as a cellular target for Wolbachia-mediated inhibition, with the incoming viral RNA experiencing rapid turnover following internalization in cells. This early block in replication in mosquito cells initially infected by the virus thus consequently reduces the production of progeny viruses from these same cells. However, this is not the only contributor to pathogen blocking. We show that the presence of Wolbachia reduces the per-particle infectivity of progeny viruses on naïve mosquito and vertebrate cells, consequently limiting virus dissemination and transmission, respectively. Importantly, we demonstrate that this aspect of pathogen blocking is independent of any particular Wolbachia-host association and affects viruses belonging to Togaviridae and Flaviviridae families of RNA viruses. Finally, consistent with the idea of the viral RNA as a target, we find that the encapsidated virion RNA is less infectious for viruses produced from Wolbachia-colonized cells. Collectively, our findings present a common mechanism of pathogen blocking in mosquitoes that establish a link between virus inhibition in the cell to virus dissemination and transmission.


Subject(s)
Flavivirus/metabolism , RNA, Viral/metabolism , Togaviridae/metabolism , Wolbachia/metabolism , Aedes , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Drosophila melanogaster , Flavivirus/genetics , RNA, Viral/genetics , Togaviridae/genetics , Vero Cells , Wolbachia/genetics
7.
Arthroscopy ; 37(11): 3360-3367, 2021 11.
Article in English | MEDLINE | ID: mdl-33957212

ABSTRACT

PURPOSE: To determine whether platelet-rich plasma (PRP) injection for lateral epicondylitis offers patients comparable outcomes to lateral epicondylar surgery. METHODS: Embase, Cochrane Library, and MEDLINE databases were searched using the terms lateral epicondylitis, lateral elbow pain, tennis elbow, lateral epicondylalgia, and elbow tendinopathy individually and combined with the terms platelet-rich plasma injections and lateral epicondylar surgery. We compared pain relief, function between the 2 treatment options, and identified whether PRP injection reduced the incidence of lateral epicondylar surgery. Studies must have compared PRP injections with lateral epicondylar surgery for the treatment of lateral epicondylitis; be of Level I, II, or III evidence; and be written in the English language. RESULTS: Three studies (1 Level II and 2 Level III) met inclusion criteria. Two of the studies suggested that PRP injections offer similar relief as surgery in the short and mid-term, one study reported that PRP injections and surgery had similar outcomes in pain improvement and return to work, whereas 1 study reported that surgery may be a better long-term solution. CONCLUSIONS: In comparison with lateral epicondylar surgery, PRP injections offer similar improvements in pain and function for patients suffering from lateral epicondylitis, especially in the short- and mid-term in 2 of the 3 included investigations. Therefore, PRP injections are an appropriate alternative for the treatment of lateral epicondylitis. LEVEL OF EVIDENCE: Level III, Systematic Review of Level III or greater evidence.


Subject(s)
Platelet-Rich Plasma , Tennis Elbow , Humans , Pain , Pain Management , Tennis Elbow/surgery , Treatment Outcome
8.
J Prim Prev ; 42(3): 297-308, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33982200

ABSTRACT

We sought to determine which demographic characteristics influence energy drink consumption habits and to examine whether caffeine content and knowledge of human nutrition affect college students' decisions to consume these beverages. We used an online survey to ask 265 college students, who did not participate in a varsity sport, to complete a survey consisting of demographic questions, the General Knowledge Questionnaire for adults, and questions about energy drink consumption habits. We found, overall, that 23.1% of our sample used energy drinks. When compared to non-consumers (76.9%), users had a significantly lower GPA, were older, and preferred drinks with a higher caffeine content. Users reported that they consumed these drinks because they wanted to feel more alert and they enjoyed the taste, even though they reported adverse effects such as trouble sleeping, shaking and tremors, and stomachaches. Knowledge of human nutrition did not affect users' choice to consume these drinks. Although the majority of college students do not consume energy drinks, room for improvement remains to curb the use of these caffeinated beverages amongst college students.


Subject(s)
Energy Drinks , Adult , Caffeine , Humans , Students , Surveys and Questionnaires
9.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171258

ABSTRACT

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Subject(s)
Heteroptera/genetics , Insect Proteins/genetics , Insecticide Resistance , Whole Genome Sequencing/methods , Animals , Ecosystem , Gene Transfer, Horizontal , Genome Size , Heteroptera/classification , Introduced Species , Phylogeny
10.
J Immunol ; 201(2): 804-813, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29898964

ABSTRACT

In mice, fetal/neonatal B-1 cell development generates murine CD5+ B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a VH11/D/JH knock-in mouse line (VH11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eµ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgMhiIgDloCD5+CD23-CD43+ cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice.


Subject(s)
Aging/immunology , B-Lymphocytes/pathology , Lymphoma, Mantle-Cell/immunology , Aging/pathology , Animals , Autoantigens/immunology , Carcinogenesis , Cell Differentiation , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Knock-In Techniques , Lymphoma, Mantle-Cell/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylcholines/immunology , Receptors, Antigen, B-Cell/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
11.
Arthroscopy ; 36(7): 2030-2038, 2020 07.
Article in English | MEDLINE | ID: mdl-32169662

ABSTRACT

To instill quality in published clinical research, reporting guidelines, consisting of checklists and flowcharts, were developed to protect against reporting poorly designed research, and researchers should be aware of the available instruments and their appropriate use. With the popularity of synthetic reviews, meta-analyses, and systematic reviews, there is a greater need to assess risk of bias and study quality. This review highlights the most frequently used guidelines and checklists, risk-of-bias scales, and quality rating scales that can assist researchers with improving their research and its eventual publication.


Subject(s)
Checklist , Research Design , Bias , Humans , Meta-Analysis as Topic , Practice Guidelines as Topic , Prognosis , Randomized Controlled Trials as Topic , Review Literature as Topic , Risk , Systematic Reviews as Topic
12.
J Virol ; 92(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29321325

ABSTRACT

Arthropod-borne viruses, such as the members of the genus Alphavirus, are a significant concern to global public health. As obligate intracellular pathogens, RNA viruses must interact with the host cell machinery to establish and complete their life cycles. Despite considerable efforts to define the host-pathogen interactions essential for alphaviral replication, an unbiased and inclusive assessment of alphaviral RNA-protein interactions has not been undertaken. Moreover, the biological and molecular importance of these interactions, in the full context of their molecular function as RNA-binding proteins, has not been fully realized. The data presented here introduce a robust viral RNA-protein discovery method to elucidate the Sindbis virus (SINV) RNA-protein host interface. Cross-link-assisted mRNP purification (CLAMP) assessment revealed an extensive array of host-pathogen interactions centered on the viral RNAs (vRNAs). After prioritization of the host proteins associated with the vRNAs, we identified the site of protein-vRNA interaction by a UV cross-linking and immunoprecipitation sequencing (CLIP-seq) approach and assessed the consequences of the RNA-protein binding event of hnRNP K, hnRNP I, and hnRNP M in regard to viral infection. Here, we demonstrate that mutation of the prioritized hnRNP-vRNA interaction sites effectively disrupts hnRNP-vRNA interaction. Correlating with disrupted hnRNP-vRNA binding, SINV growth kinetics were reduced relative to wild-type parental viral infections in vertebrate and invertebrate tissue culture models of infection. The molecular mechanism leading to reduced viral growth kinetics was found to be dysregulated structural-gene expression. Collectively, this study further defines the scope and importance of the alphavirus host-pathogen vRNA-protein interactions.IMPORTANCE Members of the genus Alphavirus are widely recognized for their potential to cause severe disease. Despite this recognition, there are no antiviral therapeutics, or safe and effective vaccines, currently available to treat alphaviral infection. Alphaviruses utilize the host cell machinery to efficiently establish and complete their life cycle. However, the extent and importance of host-pathogen RNA-protein interactions are woefully undercharacterized. The efforts detailed in this study fill this critical gap, and the significance of this research is 3-fold. First, the data presented here fundamentally expand the scope and understanding of alphavirus host-pathogen interactions. Second, this study identifies the sites of interaction for several prioritized interactions and defines the contribution of the RNA-protein interaction at the molecular level. Finally, these studies build a strategy by which the importance of the given host-pathogen interactions may be assessed in the future, using a mouse model of infection.


Subject(s)
Alphavirus Infections/virology , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Host-Pathogen Interactions , RNA, Viral/metabolism , Sindbis Virus/pathogenicity , Virus Replication , Alphavirus Infections/metabolism , Cells, Cultured , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , RNA, Viral/genetics , Sindbis Virus/genetics , Virus Assembly
13.
PLoS Pathog ; 13(6): e1006427, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617844

ABSTRACT

Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/virology , Sindbis Virus/physiology , Wolbachia/physiology , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Host-Pathogen Interactions , Symbiosis , Virus Replication
14.
PLoS Pathog ; 13(6): e1006473, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28662211

ABSTRACT

Alphaviruses are arthropod-borne viruses that represent a significant threat to public health at a global level. While the formation of alphaviral nucleocapsid cores, consisting of cargo nucleic acid and the viral capsid protein, is an essential molecular process of infection, the precise interactions between the two partners are ill-defined. A CLIP-seq approach was used to screen for candidate sites of interaction between the viral Capsid protein and genomic RNA of Sindbis virus (SINV), a model alphavirus. The data presented in this report indicates that the SINV capsid protein binds to specific viral RNA sequences in the cytoplasm of infected cells, but its interaction with genomic RNA in mature extracellular viral particles is largely non-specific in terms of nucleotide sequence. Mutational analyses of the cytoplasmic viral RNA-capsid interaction sites revealed a functional role for capsid binding early in infection. Interaction site mutants exhibited decreased viral growth kinetics; however, this defect was not a function of decreased particle production. Rather mutation of the cytoplasmic capsid-RNA interaction sites negatively affected the functional capacity of the incoming viral genomic RNAs leading to decreased infectivity. Furthermore, cytoplasmic capsid interaction site mutants are attenuated in a murine model of neurotropic alphavirus infection. Collectively, the findings of this study indicate that the identified cytoplasmic interactions of the viral capsid protein and genomic RNA, while not essential for particle formation, are necessary for genomic RNA function early during infection. This previously unappreciated role of capsid protein during the alphaviral replication cycle also constitutes a novel virulence determinant.


Subject(s)
Capsid Proteins/metabolism , RNA, Viral/metabolism , Sindbis Virus/metabolism , Animals , Capsid/metabolism , Cytoplasm/metabolism , Genome, Viral/genetics , Sindbis Virus/genetics , Sindbis Virus/pathogenicity , Viral Envelope Proteins/metabolism , Virion/metabolism , Virulence/physiology , Virus Assembly/physiology
15.
J Immunol ; 199(5): 1706-1715, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28739882

ABSTRACT

CD79a and CD79b proteins associate with Ig receptors as integral signaling components of the B cell Ag receptor complex. To study B cell development in zebrafish, we isolated orthologs of these genes and performed in situ hybridization, finding that their expression colocalized with IgH-µ in the kidney, which is the site of B cell development. CD79 transgenic lines were made by linking the promoter and upstream regulatory segments of CD79a and CD79b to enhanced GFP to identify B cells, as demonstrated by PCR analysis of IgH-µ expression in sorted cells. We crossed these CD79-GFP lines to a recombination activating gene (Rag)2:mCherry transgenic line to identify B cell development stages in kidney marrow. Initiation of CD79:GFP expression in Rag2:mCherry+ cells and the timing of Ig H and L chain expression revealed simultaneous expression of both IgH-µ- and IgL-κ-chains, without progressing through the stage of IgH-µ-chain alone. Rag2:mCherry+ cells without CD79:GFP showed the highest Rag1 and Rag2 mRNAs compared with CD79a and CD79b:GFP+ B cells, which showed strongly reduced Rag mRNAs. Thus, B cell development in zebrafish does not go through a Raghi CD79+IgH-µ+ pre-B cell stage, different from mammals. After the generation of CD79:GFP+ B cells, decreased CD79 expression occurred upon differentiation to Ig secretion, as detected by alteration from membrane to secreted IgH-µ exon usage, similar to in mammals. This confirmed a conserved role for CD79 in B cell development and differentiation, without the requirement of a pre-B cell stage in zebrafish.


Subject(s)
B-Lymphocytes/physiology , CD79 Antigens/metabolism , Fish Proteins/metabolism , Kidney/physiology , Precursor Cells, B-Lymphoid/physiology , Zebrafish/immunology , Animals , Animals, Genetically Modified , CD79 Antigens/genetics , Cell Differentiation , Cloning, Molecular , DNA-Binding Proteins/genetics , Fish Proteins/genetics , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Lymphocyte Activation , Transgenes/genetics , Zebrafish Proteins/genetics
17.
J Immunol ; 194(2): 606-14, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25480561

ABSTRACT

Expression of a germline VH3609/D/JH2 IgH in mice results in the generation of B1 B cells with anti-thymocyte/Thy-1 glycoprotein autoreactivity by coexpression of Vk21-5/Jk2 L chain leading to production of serum IgM natural autoantibody. In these same mice, the marginal zone (MZ) B cell subset in spleen shows biased usage of a set of Ig L chains different from B1 B cells, with 30% having an identical Vk19-17/Jk1 L chain rearrangement. This VH3609/Vk19-17 IgM is reactive with intestinal goblet cell granules, binding to the intact large polymatrix form of mucin 2 glycoprotein secreted by goblet cells. Analysis of a µκ B cell AgR (BCR) transgenic (Tg) mouse with this anti-goblet cell/mucin2 autoreactive (AGcA) specificity demonstrates that immature B cells expressing the Tg BCR become MZ B cells in spleen by T cell-independent BCR signaling. These Tg B cells produce AGcA as the predominant serum IgM, but without enteropathy. Without the transgene, AGcA autoreactivity is low but detectable in the serum of BALB/c and C.B17 mice, and this autoantibody is specifically produced by the MZ B cell subset. Thus, our findings reveal that AGcA is a natural autoantibody associated with MZ B cells.


Subject(s)
Autoantibodies/immunology , B-Lymphocyte Subsets/immunology , Goblet Cells/immunology , Mucin-2/immunology , Receptors, Antigen, B-Cell/immunology , Secretory Vesicles/immunology , Animals , Autoantibodies/genetics , B-Lymphocyte Subsets/pathology , Goblet Cells/pathology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mucin-2/genetics , Receptors, Antigen, B-Cell/genetics , Secretory Vesicles/genetics , Secretory Vesicles/pathology , Spleen/immunology , Spleen/pathology
18.
Eur J Immunol ; 45(11): 2978-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26339791

ABSTRACT

CD5(+) B-cell origins and their predisposition to lymphoma are long-standing issues. Transfer of fetal and adult liver BM Pro-B cells generates B cells with distinct phenotypes: fetal cells generate IgM(high) IgD(low) CD5(+) , whereas adult cells IgM(low) IgD(high) CD5(-) . This suggests a developmental switch in B lymphopoiesis, similar to the switch in erythropoiesis. Comparison of mRNA and miRNA expression in fetal and adult Pro-B cells revealed differential expression of Lin28b mRNA and Let-7 miRNA, providing evidence that this regulatory axis functions in the switch. Recent work has shown that Arid3a is a key transcription factor mediating fetal-type B-cell development. Lin28b-promoted fetal development generates CD5(+) B cells as a consequence of positively selected self-reactivity. CD5(+) B cells play important roles in clearance of apoptotic cells and in protective immune responses, but also pose a risk of progression to leukemia/lymphoma. Differential Lin28b expression in fetal and adult human B-cell precursors showed that human B-cell development may resemble mouse, with self-reactive "innate-like" B cells generated early in life. It remains to be determined whether such human B cells have a higher propensity to leukemic progression. This review describes our recent research with CD5(+) B cells and presents our perspective on their role in disease.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , CD5 Antigens/immunology , Lymphopoiesis/immunology , Precursor Cells, B-Lymphoid/immunology , Animals , Fetus , Humans , Leukemia, B-Cell/immunology
19.
J Gen Virol ; 96(9): 2483-2500, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26219641

ABSTRACT

The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.


Subject(s)
Alphavirus Infections/genetics , Alphavirus/genetics , Alphavirus/metabolism , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Alphavirus Infections/metabolism , Animals , Humans , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics
20.
BMC Med ; 13: 306, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26715442

ABSTRACT

BACKGROUND: The relationship between chemotherapy-related toxicities and prognosis is unclear. Previous studies have examined the association of myelosuppression parameters or neuropathy with survival and reported conflicting results. This study aims to investigate 13 common chemotherapy toxicities and their association with relapse-free survival and breast cancer-specific survival. METHODS: Chemotherapy-related toxicities were collected prospectively for 6,248 women with early-stage breast cancer from four randomised controlled trials (NEAT; BR9601; tAnGo; Neo-tAnGo). Cox proportional-hazards modelling was used to analyse the association between chemotherapy-related toxicities and both breast cancer-specific survival and relapse-free survival. Models included important prognostic factors and stratified by variables violating the proportional hazards assumption. RESULTS: Multivariable analysis identified severe neutropenia (grades ≥3) as an independent predictor of relapse-free survival (hazard ratio (HR) = 0.86; 95% confidence interval (CI), 0.76-0.97; P = 0.02). A similar trend was seen for breast cancer-specific survival (HR = 0.87; 95% CI, 0.75-1.01; P = 0.06). Normal/low BMI patients experienced more severe neutropenia (P = 0.008) than patients with higher BMI. Patients with fatigue (grades ≥3) showed a trend towards reduced survival (breast cancer-specific survival: HR = 1.17; 95% CI, 0.99-1.37; P = 0.06). In the NEAT/BR9601 sub-group analysis by treatment component, this effect was statistically significant (HR = 1.61; 95% CI, 1.13-2.30; P = 0.009). CONCLUSIONS: This large study shows a significant association between chemotherapy-induced neutropenia and increased survival. It also identifies a strong relationship between low/normal BMI and increased incidence of severe neutropenia. It provides evidence to support the development of neutropenia-adapted clinical trials to investigate optimal dose calculation and its impact on clinical outcome. This is important in populations where obesity may lead to sub-optimal chemotherapy doses.


Subject(s)
Antineoplastic Agents/adverse effects , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant/adverse effects , Antineoplastic Agents/therapeutic use , Breast Neoplasms/mortality , Case-Control Studies , Chemotherapy, Adjuvant/methods , Cohort Studies , Disease-Free Survival , Female , Humans , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL