Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 110(40): 16139-44, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043777

ABSTRACT

We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ~446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.


Subject(s)
Gene Rearrangement/genetics , Genome, Human/genetics , Protein Serine-Threonine Kinases/genetics , Retinitis Pigmentosa/genetics , Animals , Base Sequence , Frameshift Mutation/genetics , Genetics, Medical , Genome-Wide Association Study , Humans , Japan , Molecular Sequence Data , NIMA-Related Kinases , Sequence Analysis, DNA , United States , Zebrafish
2.
Genet Med ; 17(4): 285-90, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25255364

ABSTRACT

PURPOSE: Retinitis pigmentosa is a Mendelian disease with a very elevated genetic heterogeneity. Most mutations are responsible for less than 1% of cases, making molecular diagnosis a multigene screening procedure. In this study, we assessed whether direct testing of specific alleles could be a valuable screening approach in cases characterized by prevalent founder mutations. METHODS: We screened 275 North American patients with recessive/isolate retinitis pigmentosa for two mutations: an Alu insertion in the MAK gene and the p.Lys42Glu missense in the DHDDS gene. All patients were unrelated; 35 reported Jewish ancestry and the remainder reported mixed ethnicity. RESULTS: We identified the MAK and DHDDS mutations homozygously in only 2.1% and 0.8%, respectively, of patients of mixed ethnicity, but in 25.7% and 8.6%, respectively, of cases reporting Jewish ancestry. Haplotype analyses revealed that inheritance of the MAK mutation was attributable to a founder effect. CONCLUSION: In contrast to most mutations associated with retinitis pigmentosa-which are, in general, extremely rare-the two alleles investigated here cause disease in approximately one-third of North American patients reporting Jewish ancestry. Therefore, their screening constitutes an alternative procedure to large-scale tests for patients belonging to this ethnic group, especially in time-sensitive situations.


Subject(s)
Alkyl and Aryl Transferases/genetics , Mutation, Missense , Protein Serine-Threonine Kinases/genetics , Retinitis Pigmentosa/genetics , Alleles , Alu Elements/genetics , Amino Acid Sequence , Exons , Genes, Recessive , Haplotypes , Homozygote , Humans , Jews , North America , Retinitis Pigmentosa/pathology , United States
3.
Am J Hum Genet ; 88(5): 643-9, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21549338

ABSTRACT

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration that leads to progressive visual-field constriction and blindness. Although the disease manifests only in the retina, mutations in ubiquitously expressed genes associated with the tri-snRNP complex of the spliceosome have been identified in patients with dominantly inherited RP. We screened for mutations in PRPF6 (NM_012469.3), a gene on chromosome 20q13.33 encoding an essential protein for tri-snRNP assembly and stability, in 188 unrelated patients with autosomal-dominant RP and identified a missense mutation, c.2185C>T (p.Arg729Trp). This change affected a residue that is conserved from humans to yeast and cosegregated with the disease in the family in which it was identified. Lymphoblasts derived from patients with this mutation showed abnormal localization of endogenous PRPF6 within the nucleus. Specifically, this protein accumulated in the Cajal bodies, indicating a possible impairment in the tri-snRNP assembly or recycling. Expression of GFP-tagged PRPF6 in HeLa cells showed that this phenomenon depended exclusively on the mutated form of the protein. Furthermore, analysis of endogenous transcripts in cells from patients revealed intron retention for pre-mRNA bearing specific splicing signals, according to the same pattern displayed by lymphoblasts with mutations in other PRPF genes. Our results identify PRPF6 as the sixth gene involved in pre-mRNA splicing and dominant RP, corroborating the hypothesis that deficiencies in the spliceosome play an important role in the molecular pathology of this disease.


Subject(s)
Mutation, Missense , RNA Splicing , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics , Spliceosomes/genetics , Transcription Factors/genetics , Adult , Eye Proteins/genetics , Genes, Dominant , HeLa Cells , Humans , Introns , Male , Pedigree , RNA Splicing Factors , Retina/pathology , Retinitis Pigmentosa/metabolism
4.
Mol Vis ; 20: 843-51, 2014.
Article in English | MEDLINE | ID: mdl-24959063

ABSTRACT

PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.


Subject(s)
DNA Mutational Analysis/methods , Genes, Dominant , Genetic Testing , RNA Splicing/genetics , Retinitis Pigmentosa/genetics , High-Throughput Nucleotide Sequencing , Humans , Open Reading Frames/genetics , Peptide Elongation Factors/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear , Ribonucleoproteins, Small Nuclear/genetics
5.
Hum Mutat ; 32(6): E2246-58, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21618346

ABSTRACT

The gene SNRNP200 is composed of 45 exons and encodes a protein essential for pre-mRNA splicing, the 200 kDa helicase hBrr2. Two mutations in SNRNP200 have recently been associated with autosomal dominant retinitis pigmentosa (adRP), a retinal degenerative disease, in two families from China. In this work we analyzed the entire 35-Kb SNRNP200 genomic region in a cohort of 96 unrelated North American patients with adRP. To complete this large-scale sequencing project, we performed ultra high-throughput sequencing of pooled, untagged PCR products. We then validated the detected DNA changes by Sanger sequencing of individual samples from this cohort and from an additional one of 95 patients. One of the two previously known mutations (p.S1087L) was identified in 3 patients, while 4 new missense changes (p.R681C, p.R681H, p.V683L, p.Y689C) affecting highly conserved codons were identified in 6 unrelated individuals, indicating that the prevalence of SNRNP200-associated adRP is relatively high. We also took advantage of this research to evaluate the pool-and-sequence method, especially with respect to the generation of false positive and negative results. We conclude that, although this strategy can be adopted for rapid discovery of new disease-associated variants, it still requires extensive validation to be used in routine DNA screenings.


Subject(s)
Retinitis Pigmentosa/genetics , Ribonucleoproteins, Small Nuclear/genetics , Amino Acid Sequence , China , Codon , Exons , Genes, Dominant , Humans , Molecular Sequence Data , Mutation, Missense/genetics , Pedigree , Sequence Analysis, DNA/methods
6.
Genes (Basel) ; 8(10)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28981474

ABSTRACT

Pericentral retinitis pigmentosa (RP) is an atypical form of RP that affects the near-peripheral retina first and tends to spare the far periphery. This study was performed to further define the genetic basis of this phenotype. We identified a cohort of 43 probands with pericentral RP based on a comprehensive analysis of their retinal phenotype. Genetic analyses of DNA samples from these patients were performed using panel-based next-generation sequencing, copy number variations, and whole exome sequencing (WES). Mutations provisionally responsible for disease were found in 19 of the 43 families (44%) analyzed. These include mutations in RHO (five patients), USH2A (four patients), and PDE6B (two patients). Of 28 putatively pathogenic alleles, 15 (54%) have been previously identified in patients with more common forms of typical RP, while the remaining 13 mutations (46%) were novel. Burden testing of WES data successfully identified HGSNAT as a cause of pericentral RP in at least two patients, suggesting it is also a relatively common cause of pericentral RP. While additional sequencing might uncover new genes specifically associated with pericentral RP, the current results suggest that genetically pericentral RP is not a separate clinical entity, but rather is part of the spectrum of mild RP phenotypes.

7.
PLoS One ; 9(3): e92479, 2014.
Article in English | MEDLINE | ID: mdl-24651477

ABSTRACT

Retinitis pigmentosa (RP) is a hereditary disease that leads to the progressive degeneration of retinal photoreceptor cells and to blindness. It is caused by mutations in several distinct genes, including the ciliary gene FAM161A, which is associated with a recessive form of this disorder. Recent investigations have revealed that defects in FAM161A represent a rather prevalent cause of hereditary blindness in Israel and the Palestinian territories, whereas they seem to be rarely present within patients from Germany. Genetic or clinical data are currently not available for other countries. In this work, we screened a cohort of patients with recessive RP from North America to determine the frequency of FAM161A mutations in this ethnically-mixed population and to assess the phenotype of positive cases. Out of 273 unrelated patients, only 3 subjects had defects in FAM161A. A fourth positive patient, the sister of one of these index cases, was also identified following pedigree analysis. They were all homozygous for the p.T452Sfx3 mutation, which was previously reported as a founder DNA variant in the Israeli and Palestinian populations. Analysis of cultured lymphoblasts from patients revealed that mutant FAM161A transcripts were actively degraded by nonsense-mediated mRNA decay. Electroretinographic testing showed 30 Hz cone flicker responses in the range of 0.10 to 0.60 microvolts in all cases at their first visit (age 12 to 23) (lower norm  =  50 µV) and of 0.06 to 0.32 microvolts at their most recent examination (age 27 to 43), revealing an early-onset of this progressive disease. Our data indicate that mutations in FAM161A are responsible for 1% of recessive RP cases in North America, similar to the prevalence detected in Germany and unlike the data from Israel and the Palestinian territories. We also show that, at the molecular level, the disease is likely caused by FAM161A protein deficiency.


Subject(s)
Eye Proteins/genetics , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/genetics , Adolescent , Adult , Age of Onset , Alleles , Alternative Splicing , Case-Control Studies , Child , Female , Genetic Association Studies , Genotype , Humans , Male , Mutation , Nonsense Mediated mRNA Decay , North America/epidemiology , Optic Disk/pathology , Phenotype , Retinitis Pigmentosa/diagnosis , Transcription, Genetic , Young Adult
8.
JAMA Ophthalmol ; 132(10): 1209-14, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24993773

ABSTRACT

IMPORTANCE: Current treatments for cystoid macular edema (CME) in retinitis pigmentosa (RP) are not always effective, may lead to adverse effects, and may not restore visual acuity. The present research lays the rationale for evaluating whether an iodine supplement could reduce CME in RP. OBJECTIVE: To determine whether central foveal thickness (CFT) in the presence of CME is related to dietary iodine intake inferred from urinary iodine concentration (UIC) in nonsmoking adults with RP. DESIGN, SETTING, AND PARTICIPANTS: We performed a cross-sectional observational study of 212 nonsmoking patients aged 18 to 69 years referred to our institution for RP with visual acuity of no worse than 20/200 in at least 1 eye. EXPOSURE: Retinitis pigmentosa with or without CME. MAIN OUTCOMES AND MEASURES: With the eye as the unit of analysis, the relationship of log CFT measured by optical coherence tomography to UIC measured from multiple spot samples and represented as a 3-level classification variable (<100, 100-199, and ≥200 µg/L), assigning greater weight to patients with more reliable UIC estimates. RESULTS: Analyses were limited to 199 patients after excluding 11 who failed to return urine samples for measuring UIC and 2 outliers for UIC. Of the 199 patients, 36.2% had CME in 1 or both eyes. Although log CFT was inversely related to UIC based on findings from all eyes (P = .02), regression of log CFT on UIC separately for eyes with and without CME showed a strong inverse significant relationship for the former group (P < .001) and no significant relationship for the latter group (P = .66) as tested. For the eyes with CME, CFT ranged from a geometric mean of 267 µm for a median UIC of less than 100 µg/L to a geometric mean of 172 µm for a median UIC of 200 µg/L or greater. In contrast, we found no significant association between CME prevalence and UIC based on the entire sample as tested (odds ratio, 1.01 [95% CI, 0.38-2.67]; P = .99). CONCLUSIONS AND RELEVANCE: A higher UIC in nonsmoking adults with RP was significantly associated with less central foveal swelling in eyes with CME. Additional study is required to determine whether an iodine supplement can limit or reduce the extent of CME in patients with RP.


Subject(s)
Fovea Centralis/pathology , Iodine/urine , Macular Edema/urine , Retinitis Pigmentosa/urine , Adolescent , Adult , Aged , Cross-Sectional Studies , Diet , Female , Humans , Macular Edema/diagnosis , Male , Middle Aged , Organ Size , Retinitis Pigmentosa/diagnosis , Tomography, Optical Coherence , Visual Acuity , Young Adult
9.
Invest Ophthalmol Vis Sci ; 55(12): 8488-96, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25468891

ABSTRACT

PURPOSE: Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS: The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS: With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.


Subject(s)
Exons , Myosins/metabolism , Sequence Analysis, DNA/methods , Usher Syndromes/genetics , Adult , Cohort Studies , DNA Mutational Analysis , Gene Expression Profiling , Genetic Variation , Humans , Mutation , Pedigree , Usher Syndromes/metabolism
10.
Invest Ophthalmol Vis Sci ; 52(8): 5317-24, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21642631

ABSTRACT

PURPOSE: Bardet-Biedl syndrome (BBS) is genetically heterogeneous with 15 BBS genes currently identified, accounting for approximately 70% of cases. The aim of our study was to define further the spectrum of BBS mutations in a cohort of 44 European-derived American, 8 Tunisian, 1 Arabic, and 2 Pakistani families (55 families in total) with BBS. METHODS: A total of 142 exons of the first 12 BBS-causing genes were screened by dideoxy sequencing. Cases in which no mutations were found were then screened for BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, and INPP5E. RESULTS: Forty-three mutations, including 8 frameshift mutations, 10 nonsense mutations, 4 splice site mutations, 1 deletion, and 20 potentially or probably pathogenic missense variations, were identified in 46 of the 55 families studied (84%). Of these, 21 (2 frameshift mutations, 4 nonsense mutations, 4 splice site mutations, 1 deletion, and 10 missense variations) were novel. The molecular genetic findings raised the possibility of triallelic inheritance in 7 Caucasian families, 1 Arabian family, and 1 Tunisian patient. No mutations were detected for BBS4, BBS11, BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, or INPP5E. CONCLUSIONS: This mutational analysis extends the spectrum of known BBS mutations. Identification of 21 novel mutations highlights the genetic heterogeneity of this disorder. Differences in European and Tunisian patients, including the high frequency of the M390R mutation in Europeans, emphasize the population specificity of BBS mutations with potential diagnostic implications. The existence of some BBS cases without mutations in any currently identified BBS genes suggests further genetic heterogeneity.


Subject(s)
Bardet-Biedl Syndrome/genetics , Mutation , Proteins/genetics , Asian People , Bardet-Biedl Syndrome/diagnosis , Black People , DNA Mutational Analysis , Ethnicity , Exons/genetics , Gene Frequency , Humans , Polymerase Chain Reaction , White People
SELECTION OF CITATIONS
SEARCH DETAIL