Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Mol Cell ; 84(1): 23-33, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38029751

ABSTRACT

Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.


Subject(s)
Antioxidants , Neoplasms , Humans , Reactive Oxygen Species , Oxidative Stress , Neoplasms/genetics , Signal Transduction
2.
Mol Cell ; 80(5): 828-844.e6, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33128871

ABSTRACT

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.


Subject(s)
CRISPR-Cas Systems , Cell Culture Techniques , Cell Proliferation , Ferroptosis , NF-E2-Related Factor 2/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Spheroids, Cellular/metabolism , A549 Cells , Humans , NF-E2-Related Factor 2/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Spheroids, Cellular/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32416067

ABSTRACT

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Subject(s)
Drug Resistance, Neoplasm/genetics , Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Nuclear Proteins/metabolism , Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Triazoles/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
4.
Immunity ; 46(4): 675-689, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423341

ABSTRACT

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Subject(s)
Glutamate-Cysteine Ligase/deficiency , Glutathione/metabolism , Inflammation/metabolism , T-Lymphocytes/metabolism , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Energy Metabolism/genetics , Glutamate-Cysteine Ligase/genetics , Glutamine/metabolism , Glycolysis , Immunoblotting , Inflammation/genetics , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Cell ; 146(5): 826-40, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21884940

ABSTRACT

Protein-tyrosine phosphatases (PTPs), along with protein-tyrosine kinases, play key roles in cellular signaling. All Class I PTPs contain an essential active site cysteinyl residue, which executes a nucleophilic attack on substrate phosphotyrosyl residues. The high reactivity of the catalytic cysteine also predisposes PTPs to oxidation by reactive oxygen species, such as H(2)O(2). Reversible PTP oxidation is emerging as an important cellular regulatory mechanism and might contribute to diseases such as cancer. We exploited these unique features of PTP enzymology to develop proteomic methods, broadly applicable to cell and tissue samples, that enable the comprehensive identification and quantification of expressed classical PTPs (PTPome) and the oxidized subset of the PTPome (oxPTPome). We find that mouse and human cells and tissues, including cancer cells, display distinctive PTPomes and oxPTPomes, revealing additional levels of complexity in the regulation of protein-tyrosine phosphorylation in normal and malignant cells.


Subject(s)
Protein Tyrosine Phosphatases/analysis , Proteomics/methods , Animals , Cell Line , Humans , Mice , Mice, Inbred C57BL , Neoplasms/metabolism , Oxidation-Reduction , Rats
7.
Proc Natl Acad Sci U S A ; 115(27): 7057-7062, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915029

ABSTRACT

Metastasis remains the leading cause of cancer mortality, and reactive oxygen species (ROS) signaling promotes the metastatic cascade. However, the molecular pathways that control ROS signaling relevant to metastasis are little studied. Here, we identify SIRT3, a mitochondrial deacetylase, as a regulator of cell migration via its control of ROS signaling. We find that, although mitochondria are present at the leading edge of migrating cells, SIRT3 expression is down-regulated during migration, resulting in elevated ROS levels. This SIRT3-mediated control of ROS represses Src oxidation and attenuates focal adhesion kinase (FAK) activation. SIRT3 overexpression inhibits migration and metastasis in breast cancer cells. Finally, in human breast cancers, SIRT3 expression is inversely correlated with metastatic outcome and Src/FAK signaling. Our results reveal a role for SIRT3 in cell migration, with important implications for breast cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Epithelial Cells/metabolism , Focal Adhesion Kinase 1/metabolism , Neoplasm Proteins/metabolism , Sirtuin 3/biosynthesis , src-Family Kinases/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Enzyme Activation , Epithelial Cells/pathology , Female , Humans , Neoplasm Metastasis , Reactive Oxygen Species , Sirtuin 3/metabolism
8.
Genes Dev ; 27(10): 1101-14, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23699408

ABSTRACT

Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.


Subject(s)
Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation , Nuclear Proteins/antagonists & inhibitors , Oncogene Protein p21(ras)/metabolism , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , 9,10-Dimethyl-1,2-benzanthracene/pharmacology , Animals , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p15/biosynthesis , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Genes, ras , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Protein p21(ras)/antagonists & inhibitors , Oncogene Protein p21(ras)/genetics , Protein Inhibitors of Activated STAT/deficiency , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tetradecanoylphorbol Acetate/pharmacology , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
9.
Proc Natl Acad Sci U S A ; 114(52): E11276-E11284, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229826

ABSTRACT

Large, multidimensional cancer datasets provide a resource that can be mined to identify candidate therapeutic targets for specific subgroups of tumors. Here, we analyzed human breast cancer data to identify transcriptional programs associated with tumors bearing specific genetic driver alterations. Using an unbiased approach, we identified thousands of genes whose expression was enriched in tumors with specific genetic alterations. However, expression of the vast majority of these genes was not enriched if associations were analyzed within individual breast tumor molecular subtypes, across multiple tumor types, or after gene expression was normalized to account for differences in proliferation or tumor lineage. Together with linear modeling results, these findings suggest that most transcriptional programs associated with specific genetic alterations in oncogenes and tumor suppressors are highly context-dependent and are predominantly linked to differences in proliferation programs between distinct breast cancer subtypes. We demonstrate that such proliferation-dependent gene expression dominates tumor transcriptional programs relative to matched normal tissues. However, we also identified a relatively small group of cancer-associated genes that are both proliferation- and lineage-independent. A subset of these genes are attractive candidate targets for combination therapy because they are essential in breast cancer cell lines, druggable, enriched in stem-like breast cancer cells, and resistant to chemotherapy-induced down-regulation.


Subject(s)
Breast Neoplasms , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Models, Biological , Neoplastic Stem Cells/metabolism , Transcription, Genetic , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans
10.
Genes Dev ; 26(18): 2009-14, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22987635

ABSTRACT

Aging is associated with impaired scavenging of reactive oxygen species (ROS). Here, we show that TAp73, a p53 family member, protects against aging by regulating mitochondrial activity and preventing ROS accumulation. TAp73-null mice show more pronounced aging with increased oxidative damage and senescence. TAp73 deletion reduces cellular ATP levels, oxygen consumption, and mitochondrial complex IV activity, with increased ROS production and oxidative stress sensitivity. We show that the mitochondrial complex IV subunit cytochrome C oxidase subunit 4 (Cox4i1) is a direct TAp73 target and that Cox4i1 knockdown phenocopies the cellular senescence of TAp73-null cells. Results indicate that TAp73 affects mitochondrial respiration and ROS homeostasis, thus regulating aging.


Subject(s)
Aging/genetics , Aging/metabolism , Mitochondria/metabolism , Oxygen Consumption , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Cells, Cultured , Electron Transport Complex IV/metabolism , Fibroblasts/metabolism , Gene Knockdown Techniques , HCT116 Cells , Humans , Mice , Mice, Knockout
11.
Genes Dev ; 26(18): 2038-49, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22925884

ABSTRACT

Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP(+)/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects.


Subject(s)
Basement Membrane/pathology , Collagen/metabolism , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Animals , Basement Membrane/metabolism , Brain/cytology , Brain/pathology , Gene Knock-In Techniques , Genotype , Glioma/pathology , Mice , Mutation , Protein Stability , Reactive Oxygen Species/metabolism , Stress, Physiological
12.
Nature ; 488(7413): 656-9, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22763442

ABSTRACT

Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the 'oncometabolite' R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.


Subject(s)
Epigenesis, Genetic/genetics , Hematopoietic Stem Cells/cytology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Aging , Animals , Bone Marrow/pathology , Cell Lineage , CpG Islands/genetics , DNA Methylation , Disease Models, Animal , Female , Gene Knock-In Techniques , Glioma/pathology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice , Mutant Proteins/genetics , Myeloid Cells/cytology , Myeloid Cells/metabolism , Spleen/pathology
13.
Proc Natl Acad Sci U S A ; 111(5): 1843-8, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24449892

ABSTRACT

The generation of viable sperm proceeds through a series of coordinated steps, including germ cell self-renewal, meiotic recombination, and terminal differentiation into functional spermatozoa. The p53 family of transcription factors, including p53, p63, and p73, are critical for many physiological processes, including female fertility, but little is known about their functions in spermatogenesis. Here, we report that deficiency of the TAp73 isoform, but not p53 or ΔNp73, results in male infertility because of severe impairment of spermatogenesis. Mice lacking TAp73 exhibited increased DNA damage and cell death in spermatogonia, disorganized apical ectoplasmic specialization, malformed spermatids, and marked hyperspermia. We demonstrated that TAp73 regulates the mRNA levels of crucial genes involved in germ stem/progenitor cells (CDKN2B), spermatid maturation/spermiogenesis (metalloproteinase and serine proteinase inhibitors), and steroidogenesis (CYP21A2 and progesterone receptor). These alterations of testicular histology and gene expression patterns were specific to TAp73 null mice and not features of mice lacking p53. Our work provides previously unidentified in vivo evidence that TAp73 has a unique role in spermatogenesis that ensures the maintenance of mitotic cells and normal spermiogenesis. These results may have implications for the diagnosis and management of human male infertility.


Subject(s)
DNA-Binding Proteins/metabolism , Fertility , Nuclear Proteins/metabolism , Spermatogenesis , Tumor Suppressor Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Aging/pathology , Animals , Apoptosis/genetics , Cell Count , Cell Proliferation , DNA Damage/genetics , DNA-Binding Proteins/deficiency , Female , Fertility/genetics , Gene Expression Regulation , Humans , Infertility, Male/blood , Infertility, Male/genetics , Infertility, Male/pathology , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Oxidative Stress/genetics , Progesterone/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism , Testis/pathology , Tumor Protein p73 , Tumor Suppressor Proteins/deficiency
15.
mBio ; 15(1): e0303123, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38117060

ABSTRACT

IMPORTANCE: Viruses modulate host cell metabolism to support the mass production of viral progeny. For human cytomegalovirus, we find that the viral UL38 protein is critical for driving these pro-viral metabolic changes. However, our results indicate that these changes come at a cost, as UL38 induces an anabolic rigidity that leads to a metabolic vulnerability. We find that UL38 decouples the link between glucose availability and fatty acid biosynthetic activity. Normal cells respond to glucose limitation by down-regulating fatty acid biosynthesis. Expression of UL38 results in the inability to modulate fatty acid biosynthesis in response to glucose limitation, which results in cell death. We find this vulnerability in the context of viral infection, but this linkage between fatty acid biosynthesis, glucose availability, and cell death could have broader implications in other contexts or pathologies that rely on glycolytic remodeling, for example, oncogenesis.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Fatty Acids , Humans , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Glycolysis , Lipogenesis
16.
JCI Insight ; 9(13)2024 May 30.
Article in English | MEDLINE | ID: mdl-38815134

ABSTRACT

The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.


Subject(s)
Glycine , Sulfones , Uric Acid , Humans , Uric Acid/metabolism , Glycine/pharmacology , Glycine/analogs & derivatives , Sulfones/pharmacology , Culture Media , Drug Evaluation, Preclinical/methods , Cell Line, Tumor , Antineoplastic Agents/pharmacology
17.
Dev Cell ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823395

ABSTRACT

Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress activates primed regulatory loci and induces lineage-appropriate maturation genes despite the persistence of progenitor programs. Altering the baseline cell state by manipulating transcription factor expression causes replication stress to induce genes specific for alternative lineages. The ability of replication stress to selectively activate primed maturation programs across different contexts suggests a general mechanism by which changes in metabolism can promote lineage-appropriate cell state transitions.

18.
Trends Cell Biol ; 33(12): 1007-1009, 2023 12.
Article in English | MEDLINE | ID: mdl-37880057

ABSTRACT

Cells respond to amino acid depletion by activating stress responses. A recent study by Swanda et al. reveals that a decrease in lysosomal cystine triggers a novel stress response that transcriptionally activates ATF4 and protects cells from ferroptosis. A synthetic mRNA, CysRx, can prevent ATF4 activation and enhance antitumor effects.


Subject(s)
Cystine , Ferroptosis , Humans , Cystine/metabolism , Cysteine , Amino Acids , Lysosomes/metabolism
19.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37292722

ABSTRACT

Human cytomegalovirus (HCMV) modulates cellular metabolism to support productive infection, and the HCMV UL38 protein drives many aspects of this HCMV-induced metabolic program. However, it remains to be determined whether virally-induced metabolic alterations might induce novel therapeutic vulnerabilities in virally infected cells. Here, we explore how HCMV infection and the UL38 protein modulate cellular metabolism and how these changes alter the response to nutrient limitation. We find that expression of UL38, either in the context of HCMV infection or in isolation, sensitizes cells to glucose limitation resulting in cell death. This sensitivity is mediated through UL38's inactivation of the TSC complex subunit 2 (TSC2) protein, a central metabolic regulator that possesses tumor-suppressive properties. Further, expression of UL38 or the inactivation of TSC2 results in anabolic rigidity in that the resulting increased levels of fatty acid biosynthesis are insensitive to glucose limitation. This failure to regulate fatty acid biosynthesis in response to glucose availability sensitizes cells to glucose limitation, resulting in cell death unless fatty acid biosynthesis is inhibited. These experiments identify a regulatory circuit between glycolysis and fatty acid biosynthesis that is critical for cell survival upon glucose limitation and highlight a metabolic vulnerability associated with viral infection and the inactivation of normal metabolic regulatory controls.

20.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546939

ABSTRACT

The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.

SELECTION OF CITATIONS
SEARCH DETAIL