Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 13524, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866913

ABSTRACT

Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.


Subject(s)
Ferrets , Influenza A virus , Myxovirus Resistance Proteins , Orthomyxoviridae Infections , Animals , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Influenza A virus/immunology , Humans , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Virus Replication/drug effects , Antiviral Agents/pharmacology , Cell Line , Mice , Immunity, Innate , Lung/virology , Lung/immunology
2.
Mol Ther Nucleic Acids ; 35(3): 102283, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39165562

ABSTRACT

The implementation of targeted molecular therapies and immunotherapy in melanoma vastly improved the therapeutic outcome in patients with limited efficacy of surgical intervention. Nevertheless, a large fraction of patients with melanoma still remain refractory or acquire resistance to these new forms of treatment, illustrating a need for improvement. Here, we report that the clinically relevant combination of mitogen-activated protein (MAP) kinase pathway inhibitors dabrafenib and trametinib synergize with RIG-I agonist-induced immunotherapy to kill BRAF-mutated human and mouse melanoma cells. Kinase inhibition did not compromise the agonist-induced innate immune response of the RIG-I pathway in host immune cells. In a melanoma transplantation mouse model, the triple therapy outperformed individual therapies. Our study suggests that agonist-induced activation of RIG-I with its synthetic ligand 3pRNA could vastly improve tumor control in a substantial fraction of patients with melanoma receiving MAP kinase inhibitors.

3.
Nat Commun ; 15(1): 1534, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378748

ABSTRACT

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.


Subject(s)
Autoimmune Diseases , Interferon Type I , Myotonic Dystrophy , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , DNA, Mitochondrial/genetics , Autoimmunity/genetics , Leukocytes, Mononuclear/metabolism , RNA , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Endoplasmic Reticulum Stress/genetics
SELECTION OF CITATIONS
SEARCH DETAIL