Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
J Immunol ; 207(1): 65-76, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34135057

ABSTRACT

Insufficient autophagic degradation has been implicated in accelerated cellular senescence during chronic obstructive pulmonary disease (COPD) pathogenesis. Aging-linked and cigarette smoke (CS)-induced functional deterioration of lysosomes may be associated with impaired autophagy. Lysosomal membrane permeabilization (LMP) is indicative of damaged lysosomes. Galectin-3 and tripartite motif protein (TRIM) 16 play a cooperative role in recognizing LMP and inducing lysophagy, a lysosome-selective autophagy, to maintain lysosome function. In this study, we sought to examine the role of TRIM16-mediated lysophagy in regulating CS-induced LMP and cellular senescence during COPD pathogenesis by using human bronchial epithelial cells and lung tissues. CS extract (CSE) induced lysosomal damage via LMP, as detected by galectin-3 accumulation. Autophagy was responsible for modulating LMP and lysosome function during CSE exposure. TRIM16 was involved in CSE-induced lysophagy, with impaired lysophagy associated with lysosomal dysfunction and accelerated cellular senescence. Airway epithelial cells in COPD lungs showed an increase in lipofuscin, aggresome and galectin-3 puncta, reflecting accumulation of lysosomal damage with concomitantly reduced TRIM16 expression levels. Human bronchial epithelial cells isolated from COPD patients showed reduced TRIM16 but increased galectin-3, and a negative correlation between TRIM16 and galectin-3 protein levels was demonstrated. Damaged lysosomes with LMP are accumulated in epithelial cells in COPD lungs, which can be at least partly attributed to impaired TRIM16-mediated lysophagy. Increased LMP in lung epithelial cells may be responsible for COPD pathogenesis through the enhancement of cellular senescence.


Subject(s)
Lysosomes/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , Cells, Cultured , Humans , Hydrogen-Ion Concentration , Pulmonary Disease, Chronic Obstructive/pathology
2.
J Immunol ; 205(5): 1256-1267, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32699159

ABSTRACT

Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.


Subject(s)
Apoptosis/physiology , Chaperone-Mediated Autophagy/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Unfolded Protein Response/physiology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung/metabolism , Lung/pathology , Lysosomes/metabolism , Lysosomes/pathology , NF-E2-Related Factor 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Nicotiana/adverse effects
3.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31534007

ABSTRACT

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Bleomycin , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lipid Peroxidation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myofibroblasts/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/deficiency , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Transforming Growth Factor beta/metabolism
4.
J Immunol ; 202(5): 1428-1440, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30692212

ABSTRACT

Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1ß-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.


Subject(s)
Cellular Senescence/immunology , Lamin Type B/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Cellular Senescence/genetics , Humans , Lamin Type B/genetics , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/pathology , Tumor Cells, Cultured
5.
Cancer Sci ; 111(11): 4154-4165, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860290

ABSTRACT

Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of selective soluble proteins. Lysosome-associated membrane protein type 2a (LAMP2A) is the key receptor protein of CMA; downregulation of LAMP2A leads to CMA blockade. Although CMA activation has been involved in cancer growth, CMA status and functions in non-small cell lung cancer (NSCLC) by focusing on the roles in regulating chemosensitivity remain to be clarified. In this study, we found that LAMP2A expression is elevated in NSCLC cell lines and patient's tumors, conferring poor survival and platinum resistance in NSCLC patients. LAMP2A knockdown in NSCLC cells suppressed cell proliferation and colony formation and increased the sensitivity to chemotherapeutic drugs in vitro. Furthermore, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with CMA blockade. Remarkably, LAMP2A knockdown repressed tumorigenicity and sensitized the tumors to cisplatin treatment in NSCLC-bearing mice. Our discoveries suggest that LAMP2A is involved in the regulation of cancer malignant phenotypes and represents a promising new target against chemoresistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Signal Transduction , Animals , Apoptosis/genetics , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression , Gene Knockdown Techniques , Humans , Immunohistochemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lysosomal-Associated Membrane Protein 2/genetics , Prognosis , Proteolysis
6.
Cancer Immunol Immunother ; 69(10): 2033-2039, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32415507

ABSTRACT

Immune checkpoint inhibitor (ICI)-related pneumonitis is a relatively rare but clinically serious and potentially life-threatening adverse event. The majority of cases can be managed by drug discontinuation, with the administration of corticosteroids added in severe cases. However, worsening of pneumonitis can develop in a subset of patients despite treatment with high doses of corticosteroids. We herein report a case of steroid-refractory ICI-related pneumonitis in a recurrent non-small cell lung cancer (NSCLC) patient treated with pembrolizumab that was successfully improved by triple combination therapy (high-dose corticosteroids, tacrolimus, and cyclophosphamide). After 3 weeks of initial pembrolizumab administration, the patient was diagnosed with ICI-related pneumonitis. Chest computed tomography (CT) showed patchy distributed bilateral consolidation and ground-glass opacities (GGOs) with traction bronchiectasis and bronchiolectasis resembling the diffuse alveolar damage (DAD) radiographic pattern. Although methylprednisolone pulse therapy was initiated, worsening of respiratory failure resulted in the patient being transferred to the intensive care unit. Because of an insufficient therapeutic response to high-dose corticosteroids, tacrolimus and cyclophosphamide pulse therapy were additively performed as triple combination therapy according to the treatment strategy for pulmonary complications of clinically amyopathic dermatomyositis (CADM). In response to this triple combination therapy, the patient's respiratory condition gradually improved, and chest CT showed the marked amelioration of pulmonary opacities. This is the first report suggesting the efficacy of triple combination therapy (high-dose corticosteroids, tacrolimus, and cyclophosphamide) for steroid-refractory ICI-related pneumonitis complicated with respiratory failure.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunosuppressive Agents/therapeutic use , Pneumonia/drug therapy , Adrenal Cortex Hormones/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Carcinoma, Non-Small-Cell Lung/pathology , Cyclophosphamide/therapeutic use , Drug Therapy, Combination , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Middle Aged , Pneumonia/chemically induced , Pneumonia/pathology , Prognosis , Tacrolimus/therapeutic use
7.
Philos Trans A Math Phys Eng Sci ; 378(2182): 20190587, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-32921244

ABSTRACT

This paper describes the detectability of eddy current testing (ECT) using directional eddy current for detection of in-plane fibre waviness in unidirectional carbon fibre reinforced plastic (CFRP) laminate. Three different types of probes, such as circular driving, symmetrical driving and uniform driving probe, were proposed, and the waviness angle was extracted from the contour map of the ECT signal by applying a Canny filter and a Hough transform. By comparing both the waviness angle estimated by ECT and that obtained by an X-ray CT image, the standard deviation (precision) and root mean square error (accuracy) were evaluated to discuss the detectability of these probes. The directional uniform driving probe shows the best detectability and can detect fibre waviness with a waviness angle of more than 2° in unidirectional CFRP. The probe shows a root mean square error of 1.90° and a standard deviation of 4.49° between the actual waviness angle and the angle estimated by ECT. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.

8.
BMC Pulm Med ; 20(1): 207, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746787

ABSTRACT

BACKGROUND: Benralizumab, an anti-interleukin-5 (IL-5) receptor α monoclonal antibody, significantly reduces the number of annual exacerbations and oral corticosteroid (OCS) maintenance doses for patients with severe eosinophilic asthma (SEA). However, few studies on the efficacy of this biologic in real life are available. The aim was to elucidate the efficacy of benralizumab by evaluating changes in clinical parameters after benralizumab treatment in patients with SEA. METHODS: From July 2018 to December 2019, 24 Japanese patients with SEA received benralizumab at Jikei University Hospital. We retrospectively evaluated the patients' characteristics, parameters, numbers of exacerbations and maintenance OCS doses. RESULTS: Among the 24 patients, eleven patients had received mepolizumab treatment and were directly switched to benralizumab. The peripheral blood eosinophil and basophil counts significantly decreased after benralizumab treatment regardless of previous mepolizumab treatment. Pulmonary function, Asthma Control Test scores, the numbers of annual exacerbations and maintenance OCS doses in patients without previous mepolizumab treatment tended to improve without significant differences. Fourteen patients (58%) were responders according to the Global Evaluation of Treatment Effectiveness (GETE) score. The proportion of GETE responders among patients with aspirin-exacerbated respiratory disease (AERD) tended to be lower than that among patients without AERD (p = 0.085). After benralizumab treatment, the change in the forced expiratory volume in 1 s from baseline was 200 ml or greater in eight patients (33%), including three patients who were switched from mepolizumab. CONCLUSION: Benralizumab treatment improved and controlled asthma symptoms based on the GETE score.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Adult , Aged , Asthma/immunology , Asthma/pathology , Asthma, Aspirin-Induced/drug therapy , Disease Progression , Drug Therapy, Combination , Eosinophils/immunology , Eosinophils/pathology , Female , Forced Expiratory Volume , Humans , Interleukin-5/antagonists & inhibitors , Leukocyte Count , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Severity of Illness Index , Young Adult
9.
BMC Pulm Med ; 19(1): 176, 2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31606052

ABSTRACT

BACKGROUND: Several major randomized control studies have demonstrated that mepolizumab, an anti-IL-5 monoclonal antibody, is effective for patients with severe eosinophilic asthma who show exacerbation or require systemic corticosteroid maintenance therapy. However, the predictive factors of the response to mepolizumab other than blood eosinophil count are unclear in clinical practice. OBJECTIVE: To elucidate the predictive factors of the response to mepolizumab for patients with severe eosinophilic asthma. METHODS: From July 2016 to December 2017, 28 patients with severe asthma received mepolizumab in our hospital. To determine the predictive factors, we retrospectively evaluated patient characteristics, comorbidities, biomarkers, pulmonary function, maintenance dose of systemic corticosteroids and number of exacerbations. RESULTS: The response rate to mepolizumab treatment was 70% (19/27; one pregnant woman was excluded from analysis). Compared with 11 patients without eosinophilic chronic rhinosinusitis (ECRS), 16 patients with ECRS showed significantly improved systemic corticosteroid-sparing effects [- 71.3 ± 37.0% vs - 10.7 ± 20.1%, P = 0.006], change from baseline FeNO [- 19 ± 57 (%) vs 30 ± 77 (%), P = 0.023] and symptoms [14 patients (88%) vs five patients (45%), P = 0.033]. ECRS was identified as a predictive factor of the response to mepolizumab in a multivariate logistic regression analysis [odds ratio = 22.5, 95% CI (1.5-336), P = 0.024]. Of the eight patients previously administered omalizumab, five responded to mepolizumab. Staphylococcus aureus enterotoxin B IgE results were negative in 80% of responders (P = 0.14). CONCLUSION: Both groups showed improved symptom scores and a decreased number of exacerbations. Mepolizumab substantially improved the clinical variables of patients with eosinophilic asthma complicated with ECRS.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Eosinophilia/drug therapy , Rhinitis/drug therapy , Sinusitis/drug therapy , Adult , Asthma/complications , Chronic Disease , Disease Progression , Eosinophilia/complications , Female , Humans , Japan , Leukocyte Count , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Rhinitis/complications , Severity of Illness Index , Sinusitis/complications , Treatment Outcome
10.
J Immunol ; 197(2): 504-16, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27279371

ABSTRACT

Fibroblastic foci, known to be the leading edge of fibrosis development in idiopathic pulmonary fibrosis (IPF), are composed of fibrogenic myofibroblasts. Autophagy has been implicated in the regulation of myofibroblast differentiation. Insufficient mitophagy, the mitochondria-selective autophagy, results in increased reactive oxygen species, which may modulate cell signaling pathways for myofibroblast differentiation. Therefore, we sought to investigate the regulatory role of mitophagy in myofibroblast differentiation as a part of IPF pathogenesis. Lung fibroblasts were used in in vitro experiments. Immunohistochemical evaluation in IPF lung tissues was performed. PARK2 was examined as a target molecule for mitophagy regulation, and a PARK2 knockout mouse was employed in a bleomycin-induced lung fibrosis model. We demonstrated that PARK2 knockdown-mediated mitophagy inhibition was involved in the mechanism for activation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway accompanied by enhanced myofibroblast differentiation and proliferation, which were clearly inhibited by treatment with both antioxidants and AG1296, a PDGFR inhibitor. Mitophagy inhibition-mediated activation of PDGFR signaling was responsible for further autophagy suppression, suggesting the existence of a self-amplifying loop of mitophagy inhibition and PDGFR activation. IPF lung demonstrated reduced PARK2 with concomitantly increased PDGFR phosphorylation. Furthermore, bleomycin-induced lung fibrosis was enhanced in PARK2 knockout mice and subsequently inhibited by AG1296. These findings suggest that insufficient mitophagy-mediated PDGFR/PI3K/AKT activation, which is mainly attributed to reduced PARK2 expression, is a potent underlying mechanism for myofibroblast differentiation and proliferation in fibroblastic foci formation during IPF pathogenesis.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Mitophagy/physiology , Myofibroblasts/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Blotting, Western , Cell Differentiation/physiology , Fluorescent Antibody Technique , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/physiology
11.
BMC Pulm Med ; 18(1): 4, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29316890

ABSTRACT

BACKGROUND: Postoperative pulmonary complications (PPC) in patients with pulmonary diseases remain to be resolved clinical issue. However, most evidence regarding PPC has been established more than 10 years ago. Therefore, it is necessary to evaluate perioperative management using new inhalant drugs in patients with obstructive pulmonary diseases. METHODS: April 2014 through March 2015, 346 adult patients with pulmonary diseases (257 asthma, 89 chronic obstructive pulmonary disease (COPD)) underwent non-pulmonary surgery except cataract surgery in our university hospital. To analyze the risk factors for PPC, we retrospectively evaluated physiological backgrounds, surgical factors and perioperative specific treatment for asthma and COPD. RESULTS: Finally, 29 patients with pulmonary diseases (22 asthma, 7 COPD) had PPC. In patients with asthma, smoking index (≥ 20 pack-years), peripheral blood eosinophil count (≥ 200/mm3) and severity (Global INitiative for Asthma(GINA) STEP ≥ 3) were significantly associated with PPC in the multivariate logistic regression analysis [odds ratio (95% confidence interval) = 5.4(1.4-20.8), 0.31 (0.11-0.84) and 3.2 (1.04-9.9), respectively]. In patients with COPD, age, introducing treatment for COPD, upper abdominal surgery and operation time (≥ 5 h) were significantly associated with PPC [1.18 (1.00-1.40), 0.09 (0.01-0.81), 21.2 (1.3-349) and 9.5 (1.2-77.4), respectively]. CONCLUSIONS: History of smoking or severe asthma is a risk factor of PPC in patients with asthma, and age, upper abdominal surgery, or long operation time is a risk factor of PPC in patients with COPD. Adequate inhaled corticosteroids treatment in patients with eosinophilic asthma and introducing treatment for COPD in patients with COPD could reduce PPCs.


Subject(s)
Asthma/epidemiology , Neutrophils , Postoperative Complications/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Abdomen/surgery , Adult , Age Factors , Aged , Aged, 80 and over , Asthma/blood , Asthma/physiopathology , Female , Humans , Leukocyte Count , Male , Middle Aged , Operative Time , Pulmonary Disease, Chronic Obstructive/drug therapy , Retrospective Studies , Risk Factors , Severity of Illness Index , Smoking/epidemiology , Young Adult
12.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L122-L130, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27913421

ABSTRACT

Small airway fibrosis is a major pathological feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Chronic inflammatory cells accumulate around small airways in COPD and are thought to play a major role in small airway fibrosis. Mice deficient in α/ß T cells have recently been shown to be protected from both experimental airway inflammation and fibrosis. In these models, CD4+Th17 cells and secretion of IL-17A are increased. However, a pathogenic role for IL-17 in specifically mediating fibrosis around airways has not been demonstrated. Here a role for IL-17A in airway fibrosis was demonstrated using mice deficient in the IL-17 receptor A (il17ra) Il17ra-deficient mice were protected from both airway inflammation and fibrosis in two different models of airway fibrosis that employ COPD-relevant stimuli. In these models, CD4+ Th17 are a major source of IL-17A with other expressing cell types including γδ T cells, type 3 innate lymphoid cells, polymorphonuclear cells, and CD8+ T cells. Antibody neutralization of IL-17RA or IL-17A confirmed that IL-17A was the relevant pathogenic IL-17 isoform and IL-17RA was the relevant receptor in airway inflammation and fibrosis. These results demonstrate that the IL-17A/IL-17 RA axis is crucial to murine airway fibrosis. These findings suggest that IL-17 might be targeted to prevent the progression of airway fibrosis in COPD.


Subject(s)
Interleukin-17/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Adenoviridae/metabolism , Animals , Disease Models, Animal , Interleukin-1beta/pharmacology , Mice, Inbred C57BL , Neutralization Tests , Pneumonia/complications , Pneumonia/metabolism , Pneumonia/pathology , Poly I-C/pharmacology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Receptors, Interleukin-17/metabolism , Smoking/adverse effects
13.
Respir Res ; 18(1): 114, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28577568

ABSTRACT

BACKGROUND: Pirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation. In this study, the effect of PFD on autophagy/mitophagy activation in lung fibroblasts (LF) was evaluated, specifically the anti-fibrotic property of PFD for modulation of myofibroblast differentiation during insufficient mitophagy. METHODS: Transforming growth factor-ß (TGF-ß)-induced or ATG5, ATG7, and PARK2 knockdown-mediated myofibroblast differentiation in LF were used for in vitro models. The anti-fibrotic role of PFD was examined in a bleomycin (BLM)-induced lung fibrosis model using PARK2 knockout (KO) mice. RESULTS: We found that PFD induced autophagy/mitophagy activation via enhanced PARK2 expression, which was partly involved in the inhibition of myofibroblast differentiation in the presence of TGF-ß. PFD inhibited the myofibroblast differentiation induced by PARK2 knockdown by reducing mitochondrial ROS and PDGFR-PI3K-Akt activation. BLM-treated PARK2 KO mice demonstrated augmentation of lung fibrosis and oxidative modifications compared to those of BLM-treated wild type mice, which were efficiently attenuated by PFD. CONCLUSIONS: These results suggest that PFD induces PARK2-mediated mitophagy and also inhibits lung fibrosis development in the setting of insufficient mitophagy, which may at least partly explain the anti-fibrotic mechanisms of PFD for IPF treatment.


Subject(s)
Antioxidants/pharmacology , Cell Differentiation/drug effects , Lung/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Myofibroblasts/drug effects , Pulmonary Fibrosis/drug therapy , Pyridones/pharmacology , Animals , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Bleomycin , Cells, Cultured , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA Interference , Reactive Oxygen Species/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
J Immunol ; 194(8): 3962-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25786688

ABSTRACT

Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease and are refractory to current treatments. How and whether chronic inflammation contributes to airway fibrosis remain controversial. In this study, we use a model of chronic obstructive pulmonary disease airway disease utilizing adenoviral delivery of IL-1ß to determine that adaptive T cell immunity is required for airway remodeling because mice deficient in α/ß T cells (tcra(-/-)) are protected. Dendritic cells (DCs) accumulate around chronic obstructive pulmonary disease airways and are critical to prime adaptive immunity, but they have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor ccr6 both protect from adenoviral IL-1ß-induced airway adaptive T cell immune responses and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/ß T cells and driven by DCs, is critical to airway fibrosis.


Subject(s)
Adaptive Immunity , Dendritic Cells/immunology , Interleukin-1beta/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Fibrosis/immunology , Animals , Dendritic Cells/pathology , Interleukin-1beta/genetics , Mice , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Fibrosis/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
15.
J Immunol ; 195(3): 1182-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26109638

ABSTRACT

Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of Ag surveillance and Ag presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1ß) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 µm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvß8, a critical activator of TGF-ß. αvß8-Mediated TGF-ß activation is known to enhance IL-1ß-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvß8, ccl20, and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli.


Subject(s)
Dendritic Cells/immunology , Integrins/immunology , Interleukin-1beta/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Transforming Growth Factor beta/immunology , Adaptive Immunity/immunology , Animals , Cell Movement/immunology , Chemokine CCL20/biosynthesis , Chemokine CCL20/immunology , Disease Models, Animal , Enzyme Activation/immunology , Fibroblasts/immunology , Integrins/biosynthesis , Interleukin-1beta/biosynthesis , Lung/diagnostic imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Poly I-C/pharmacology , Pulmonary Disease, Chronic Obstructive/pathology , Radiography , Receptors, CCR6/genetics , Receptors, CCR6/immunology , Smoke/adverse effects , Toll-Like Receptor 3 , Transforming Growth Factor beta/metabolism
16.
J Biol Chem ; 290(23): 14717-28, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25918170

ABSTRACT

CCL20 is the only chemokine ligand for the chemokine receptor CCR6, which is expressed by the critical antigen presenting cells, dendritic cells. Increased expression of CCL20 is likely involved in the increased recruitment of dendritic cells observed in fibroinflammatory diseases such as chronic obstructive pulmonary disease (COPD). CCL20 expression is increased by the proinflammatory cytokine IL-1ß. We have determined that IL-1ß-dependent CCL20 expression is also dependent on the multifunctional cytokine TGF-ß. TGF-ß is expressed in a latent form that must be activated to function, and activation is achieved through binding to the integrin αvß8 (itgb8). Here we confirm correlative increases in αvß8 and IL-1ß with CCL20 protein in lung parenchymal lysates of a large cohort of COPD patients. How IL-1ß- and αvß8-mediated TGF-ß activation conspire to increase fibroblast CCL20 expression remains unknown, because these pathways have not been shown to directly interact. We evaluate the 5'-flanking region of CCL20 to determine that IL-1ß-driven CCL20 expression is dependent on αvß8-mediated activation of TGF-ß. We identify a TGF-ß-responsive element (i.e. SMAD) located on an upstream enhancer of the human CCL20 promoter required for efficient IL-1ß-dependent CCL20 expression. By chromatin immunoprecipitation, this upstream enhancer complexes with the p50 subunit of NF-κB on a NF-κB-binding element close to the transcriptional start site of CCL20. These interactions are confirmed by electromobility shift assays in nuclear extracts from human lung fibroblasts. These data define a mechanism by which αvß8-dependent activation of TGF-ß regulates IL-1ß-dependent CCL20 expression in COPD.


Subject(s)
Chemokine CCL20/genetics , Interleukin-1beta/immunology , Response Elements , Signal Transduction , Transforming Growth Factor beta/immunology , Animals , Base Sequence , Cells, Cultured , Fibroblasts/immunology , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Lung/cytology , Mice , Mice, Inbred C57BL , NF-kappa B/immunology
17.
Respir Res ; 17(1): 107, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27576730

ABSTRACT

BACKGROUND: Accumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-ß plays a key regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the mechanism for TGF-ß-induced myofibroblast differentiation. Metformin is a biguanide antidiabetic medication and its pharmacological action is mediated through the activation of AMP-activated protein kinase (AMPK), which regulates not only energy homeostasis but also stress responses, including ROS. Therefore, we sought to investigate the inhibitory role of metformin in lung fibrosis development via modulating TGF-ß signaling. METHODS: TGF-ß-induced myofibroblast differentiation in lung fibroblasts (LF) was used for in vitro models. The anti-fibrotic role of metfromin was examined in a bleomycin (BLM)-induced lung fibrosis model. RESULTS: We found that TGF-ß-induced myofibroblast differentiation was clearly inhibited by metformin treatment in LF. Metformin-mediated activation of AMPK was responsible for inhibiting TGF-ß-induced NOX4 expression. NOX4 knockdown and N-acetylcysteine (NAC) treatment illustrated that NOX4-derived ROS generation was critical for TGF-ß-induced SMAD phosphorylation and myofibroblast differentiation. BLM treatment induced development of lung fibrosis with concomitantly enhanced NOX4 expression and SMAD phosphorylation, which was efficiently inhibited by metformin. Increased NOX4 expression levels were also observed in FF of IPF lungs and LF isolated from IPF patients. CONCLUSIONS: These findings suggest that metformin can be a promising anti-fibrotic modality of treatment for IPF affected by TGF-ß.


Subject(s)
Idiopathic Pulmonary Fibrosis/prevention & control , Lung/drug effects , Metformin/pharmacology , Myofibroblasts/drug effects , NADPH Oxidase 4/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Bleomycin , Cell Differentiation/drug effects , Cells, Cultured , Cytoprotection , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/enzymology , Lung/pathology , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , NADPH Oxidase 4/genetics , Phosphorylation , RNA Interference , Reactive Oxygen Species/metabolism , Smad Proteins/metabolism , Time Factors , Transfection , Transforming Growth Factor beta/pharmacology
19.
J Asthma Allergy ; 15: 395-405, 2022.
Article in English | MEDLINE | ID: mdl-35392537

ABSTRACT

Background: Treatment with dupilumab, an anti-interleukin (IL)-4 receptor α monoclonal antibody that blocks both the IL-4 and IL-13 pathways, has demonstrated efficacy for the treatment of severe asthma (SA) with type 2 inflammation. However, few studies have focused on the efficacy of this biologic for the treatment of SA in a real-world setting. Methods: From April 2019 to December 2021, 26 Japanese patients with SA received dupilumab at Jikei University Hospital. We retrospectively evaluated the number of moderate-to-severe exacerbations, pulmonary function, maintenance dose of corticosteroids, biomarkers, and adverse events. Results: During a mean follow-up period of 12.6 months, 10 patients received dupilumab as the first biologic, and 16 switched to dupilumab from other biologics. Dupilumab treatment significantly reduced the number of annual exacerbations from 3.4 ± 4.1 to 1.6 ± 2.7 (/person-year, p < 0.01) at the last follow-up regardless of previous biologic use. The Asthma Control Test score significantly improved in all patients by six months after administration but tended to worsen by 24 months in patients with previous biologic use. On the other hand, blood eosinophil counts (BECs) transiently increased and peaked three to six months after administration. The peak timing can be affected by previous biologic use. Adverse events included wheezing immediately after injection, hypereosinophilia, mild conjunctivitis, and relapse of chronic eosinophilic pneumonia in the patient switched from benralizumab. Conclusion: Dupilumab treatment was useful for patients with SA in a real-world setting. However, the BEC should be monitored carefully, especially in patients who previously received anti-IL-5/IL-5 receptor antibody.

20.
J Cachexia Sarcopenia Muscle ; 13(3): 1864-1882, 2022 06.
Article in English | MEDLINE | ID: mdl-35373498

ABSTRACT

BACKGROUND: Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. METHODS: The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin-/- mice, and human muscle samples from patients with COPD-related sarcopenia. RESULTS: Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin-/- mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. CONCLUSIONS: Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Mice, Inbred C57BL , Mitophagy/physiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Reactive Oxygen Species/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL