Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Nucleic Acids Res ; 36(Web Server issue): W513-8, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18515843

ABSTRACT

We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total of eight new tools were added, including two B-cell epitope prediction tools, four T-cell epitope prediction tools and two analysis tools.


Subject(s)
Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Software , Computer Graphics , Databases, Factual , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Internet , Peptides/chemistry , Peptides/immunology , Proteins/chemistry , Proteins/immunology
2.
Protein Sci ; 15(11): 2558-67, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17001032

ABSTRACT

Discovery of discontinuous B-cell epitopes is a major challenge in vaccine design. Previous epitope prediction methods have mostly been based on protein sequences and are not very effective. Here, we present DiscoTope, a novel method for discontinuous epitope prediction that uses protein three-dimensional structural data. The method is based on amino acid statistics, spatial information, and surface accessibility in a compiled data set of discontinuous epitopes determined by X-ray crystallography of antibody/antigen protein complexes. DiscoTope is the first method to focus explicitly on discontinuous epitopes. We show that the new structure-based method has a better performance for predicting residues of discontinuous epitopes than methods based solely on sequence information, and that it can successfully predict epitope residues that have been identified by different techniques. DiscoTope detects 15.5% of residues located in discontinuous epitopes with a specificity of 95%. At this level of specificity, the conventional Parker hydrophilicity scale for predicting linear B-cell epitopes identifies only 11.0% of residues located in discontinuous epitopes. Predictions by the DiscoTope method can guide experimental epitope mapping in both rational vaccine design and development of diagnostic tools, and may lead to more efficient epitope identification.


Subject(s)
Epitope Mapping/methods , Epitopes, B-Lymphocyte/chemistry , Imaging, Three-Dimensional/methods , Animals , Antigen-Antibody Complex/chemistry , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Membrane Proteins/chemistry , Membrane Proteins/immunology , Models, Molecular , Odds Ratio , Plasmodium falciparum , Protein Structure, Secondary , Protozoan Proteins/chemistry , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL