Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuroradiology ; 66(7): 1105-1112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38514472

ABSTRACT

PURPOSE: We investigated whether the quality of high-resolution computed tomography (CT) images of the temporal bone improves with deep learning reconstruction (DLR) compared with hybrid iterative reconstruction (HIR). METHODS: This retrospective study enrolled 36 patients (15 men, 21 women; age, 53.9 ± 19.5 years) who had undergone high-resolution CT of the temporal bone. Axial and coronal images were reconstructed using DLR, HIR, and filtered back projection (FBP). In qualitative image analyses, two radiologists independently compared the DLR and HIR images with FBP in terms of depiction of structures, image noise, and overall quality, using a 5-point scale (5 = better than FBP, 1 = poorer than FBP) to evaluate image quality. The other two radiologists placed regions of interest on the tympanic cavity and measured the standard deviation of CT attenuation (i.e., quantitative image noise). Scores from the qualitative and quantitative analyses of the DLR and HIR images were compared using, respectively, the Wilcoxon signed-rank test and the paired t-test. RESULTS: Qualitative and quantitative image noise was significantly reduced in DLR images compared with HIR images (all comparisons, p ≤ 0.016). Depiction of the otic capsule, auditory ossicles, and tympanic membrane was significantly improved in DLR images compared with HIR images (both readers, p ≤ 0.003). Overall image quality was significantly superior in DLR images compared with HIR images (both readers, p < 0.001). CONCLUSION: Compared with HIR, DLR provided significantly better-quality high-resolution CT images of the temporal bone.


Subject(s)
Deep Learning , Radiographic Image Interpretation, Computer-Assisted , Temporal Bone , Tomography, X-Ray Computed , Humans , Female , Male , Temporal Bone/diagnostic imaging , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Adult , Aged
2.
Can Assoc Radiol J ; : 8465371241228468, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38293802

ABSTRACT

Objective: This study aimed to investigate whether deep-learning reconstruction (DLR) improves interobserver agreement in the evaluation of honeycombing for patients with interstitial lung disease (ILD) who underwent high-resolution computed tomography (CT) compared with hybrid iterative reconstruction (HIR). Methods: In this retrospective study, 35 consecutive patients suspected of ILD who underwent CT including the chest region were included. High-resolution CT images of the unilateral lung with DLR and HIR were reconstructed for the right and left lungs. A radiologist placed regions of interest on the lung and measured standard deviation of CT attenuation (i.e., quantitative image noise). In the qualitative image analyses, 5 blinded readers assessed the presence of honeycombing and reticulation, qualitative image noise, artifacts, and overall image quality using a 5-point scale (except for artifacts which was evaluated using a 3-point scale). Results: The quantitative and qualitative image noise in DLR was remarkably reduced compared to that in HIR (P < .001). Artifacts and overall DLR quality were significantly improved compared to those of HIR (P < .001 for 4 out of 5 readers). Interobserver agreement in the evaluations of honeycombing and reticulation for DLR (0.557 [0.450-0.693] and 0.525 [0.470-0.541], respectively) were higher than those for HIR (0.321 [0.211-0.520] and 0.470 [0.354-0.533], respectively). A statistically significant difference was found for honeycombing (P = .014). Conclusions: DLR improved interobserver agreement in the evaluation of honeycombing in patients with ILD on CT compared to HIR.

3.
Br J Radiol ; 96(1150): 20220685, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37000686

ABSTRACT

OBJECTIVE: To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images. METHODS: This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent contrast-enhanced CT between December 2014 and May 2021 (mean age, 67.9 ± 10.3 years; 233 men). A deep learning model was developed using data from 200 and 25 patients with esophageal cancer as training and validation data sets, respectively. The model was then applied to the test data set, consisting of additional 25 and 25 patients with and without esophageal cancer, respectively. Four readers (one radiologist and three radiology residents) independently registered the likelihood of malignant lesions using a 3-point scale in the test data set. After the scorings were completed, the readers were allowed to reference to the deep learning model results and modify their scores, when necessary. RESULTS: The area under the curve (AUC) of the deep learning model was 0.95 and 0.98 in the image- and patient-based analyses, respectively. By referencing to the deep learning model results, the AUCs for the readers were improved from 0.96/0.93/0.96/0.93 to 0.97/0.95/0.99/0.96 (p = 0.100/0.006/<0.001/<0.001, DeLong's test) in the image-based analysis, with statistically significant differences noted for the three less-experienced readers. Furthermore, the AUCs for the readers tended to improve from 0.98/0.96/0.98/0.94 to 1.00/1.00/1.00/1.00 (p = 0.317/0.149/0.317/0.073, DeLong's test) in the patient-based analysis. CONCLUSION: The deep learning model mainly helped less-experienced readers improve their performance in detecting esophageal cancer on contrast-enhanced CT. ADVANCES IN KNOWLEDGE: A deep learning model could mainly help less-experienced readers to detect esophageal cancer by improving their diagnostic confidence and diagnostic performance.


Subject(s)
Deep Learning , Esophageal Neoplasms , Radiology , Male , Humans , Middle Aged , Aged , Retrospective Studies , Radiology/education , Radiologists , Tomography, X-Ray Computed/methods , Esophageal Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL