Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Magn Reson Med ; 76(3): 946-52, 2016 09.
Article in English | MEDLINE | ID: mdl-26362018

ABSTRACT

PURPOSE: To facilitate decision making in the oncology clinic, technologies have recently been developed to independently inject and assess multiple anticancer agents directly in a patient's tumor. To increase the flexibility of this approach beyond histological readouts of response, contrast-enhanced MRI was evaluated for the detection of cell death in living tumors after injection. METHODS: A six-needle arrayed microinjection device designed to provide head-to-head comparisons of chemotherapy responses in living tumors was used. Xenografted non-Hodgkin lymphoma tumors in athymic Nude-Foxn1(nu) mice were injected either with different doses of vincristine or with one needle each of vincristine, doxorubicin, bendamustine, prednisolone, mafosfamide, and a vehicle control. To assess drug responses, measurements of enhancement by T1-weighted contrast-enhanced MRI were made for individual sites at 24, 48, and 72 h after injection. For comparison, histological evaluations of cell death were obtained after tumor resection. RESULTS: Measurements of MRI enhancement at injection sites showed a significant (P < 0.001) positive regression slope as a function of vincristine dose. Average MRI measurements were closely correlated with cell death by hematoxylin and eosin staining (R = 0.81; P = 0.001). CONCLUSION: Contrast-enhanced MRI has the potential to replace or augment histological analyses of tumor responses to microinjected doses of chemotherapy agents with potential application in selecting optimal chemotherapy regimens. Magn Reson Med 76:946-952, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Monitoring/methods , Lymphoma, Non-Hodgkin/diagnostic imaging , Lymphoma, Non-Hodgkin/drug therapy , Magnetic Resonance Imaging/methods , Microinjections/methods , Animals , Apoptosis/drug effects , Cell Line, Tumor , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Nude , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
2.
Proc Natl Acad Sci U S A ; 109(20): 7859-64, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22550175

ABSTRACT

The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.


Subject(s)
Medulloblastoma/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Veratrum Alkaloids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Base Sequence , Blotting, Western , Comparative Genomic Hybridization , DNA Primers/genetics , Drug Resistance, Neoplasm , Flow Cytometry , Gene Expression Profiling , Immunohistochemistry , Kruppel-Like Transcription Factors/genetics , Magnetic Resonance Imaging , Medulloblastoma/pathology , Mice , Molecular Sequence Data , Pilot Projects , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Smoothened Receptor , Survival Analysis , Veratrum Alkaloids/therapeutic use , Zinc Finger Protein Gli2
3.
Sci Transl Med ; 13(611): eaba7791, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524860

ABSTRACT

SUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes. Ex vivo treatment of mouse and human dendritic cells promoted their IFN1-dependent activation, and vaccination studies in mice demonstrated stimulation of antigen cross-presentation and T cell priming in vivo. TAK-981 also directly stimulated T cell activation, driving enhanced T cell sensitivity and response to antigen ex vivo. Consistent with these observations, TAK-981 inhibited growth of syngeneic A20 and MC38 tumors in mice, dependent upon IFN1 signaling and CD8+ T cells, and associated with increased intratumoral T and natural killer cell number and activation. Combination of TAK-981 with anti-PD1 or anti-CTLA4 antibodies improved the survival of mice bearing syngeneic CT26 and MC38 tumors. In conclusion, TAK-981 is a first-in-class SUMOylation inhibitor that promotes antitumor immune responses through activation of IFN1 signaling. TAK-981 is currently being studied in phase 1 clinical trials (NCT03648372, NCT04074330, NCT04776018, and NCT04381650) for the treatment of patients with solid tumors and lymphomas.


Subject(s)
Immunity , Sumoylation
4.
Cancer Res ; 64(21): 7794-800, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15520185

ABSTRACT

To develop a genetically faithful model of medulloblastoma with increased tumor incidence compared with the current best model we activated the Sonic Hedgehog (Shh) pathway by transgenically expressing a constitutively active form of Smoothened in mouse cerebellar granule neuron precursors (ND2:SmoA1 mice). This resulted in early cerebellar granule cell hyper-proliferation and a 48% incidence of medulloblastoma formation. Gene expression studies showed an increase in the known Shh targets Gli1 and Nmyc that correlated with increasing hyperplasia and tumor formation. Notch2 and the Notch target gene, HES5, were also significantly elevated in Smoothened-induced tumors showing that Shh pathway activation is sufficient to induce Notch pathway signaling. In human medulloblastomas reverse transcription-PCR for Shh and Notch targets revealed activation of both of these pathways in most tumors when compared with normal cerebellum. Notch pathway inhibition with soluble Delta ligand or gamma secretase inhibitors resulted in a marked reduction of viable cell numbers in medulloblastoma cell lines and primary tumor cultures. Treatment of mice with D283 medulloblastoma xenografts with a gamma secretase inhibitor resulted in decreased proliferation and increased apoptosis, confirming that Notch signaling contributes to human medulloblastoma proliferation and survival. Medulloblastomas in ND2:SmoA1 mice and humans have concomitant increase in Shh and Notch pathway activities, both of which contribute to tumor survival.


Subject(s)
Cerebellar Neoplasms/pathology , Medulloblastoma/pathology , Membrane Proteins/physiology , Signal Transduction/physiology , Trans-Activators/physiology , Adolescent , Animals , Cell Line, Tumor , Cell Survival , Cerebellum/metabolism , Cerebellum/pathology , Child , Hedgehog Proteins , Humans , Hyperplasia , Mice , Mice, Inbred C57BL , Receptors, Notch
5.
Sci Transl Med ; 7(284): 284ra58, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25904742

ABSTRACT

A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor/methods , Lymphoma/drug therapy , Neoplasms/drug therapy , Animals , Biomarkers , Cell Line, Tumor , Cyclophosphamide/analogs & derivatives , Cyclophosphamide/chemistry , Dogs , Doxorubicin/chemistry , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Humans , Mice , Mice, Nude , Mice, SCID , Neoplasm Transplantation , Prednisolone/chemistry , TOR Serine-Threonine Kinases/metabolism , Vincristine/chemistry
6.
Biomark Res ; 1(1): 14, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-24252239

ABSTRACT

BACKGROUND: The cyclin-dependent kinase inhibitor p27Kip1 functions during normal cerebellar development and has demonstrated tumor suppressor functions in mouse models of medulloblastoma. Because P27 loss is associated with increased proliferation, we assessed whether P27 absence in surgical medulloblastoma specimens correlated with response to therapy in pediatric patients enrolled in two large studies. Additionally, we examined the functional consequence of p27Kip1 loss in the SmoA1 medulloblastoma model to distinguish whether p27Kip1 reduces tumor initiation or slows tumor progression. FINDINGS: Analysis of 87 well-characterized patient samples identified a threshold of P27 staining at which significant P27 loss correlated with poor patient outcome. The same criteria, applied to a second test set of tissues from 141 patients showed no difference in survival between patients with minimal P27 staining and others, suggesting that P27 levels alone are not a sufficient prognostic indicator for identifying standard-risk patients that may fail standard therapy. These findings were in contrast to prior experiments completed using a mouse medulloblastoma model. Analysis of cerebellar tumor incidence in compound mutant mice carrying the activated Smoothened (SmoA1) allele that were heterozygous or nullizygous for p27Kip1 revealed that p27Kip1 loss did not alter the frequency of tumor initiation. Tumors haploinsufficient or nullizygous for p27Kip1 were, however, more invasive and displayed a higher proliferative index, suggesting p27Kip1 loss may contribute to SmoA1 medulloblastoma progression. CONCLUSIONS: These studies revealed P27 loss affects medulloblastoma progression rather than initiation and that this putative biomarker should not be used for stratifying children with medulloblastoma to risk-based therapeutic regimens.

7.
Mol Cell Biol ; 32(20): 4104-15, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22869526

ABSTRACT

Deregulated developmental processes in the cerebellum cause medulloblastoma, the most common pediatric brain malignancy. About 25 to 30% of cases are caused by mutations increasing the activity of the Sonic hedgehog (Shh) pathway, a critical mitogen in cerebellar development. The proto-oncogene Smoothened (Smo) is a key transducer of the Shh pathway. Activating mutations in Smo that lead to constitutive activity of the Shh pathway have been identified in human medulloblastoma. To understand the developmental and oncogenic effects of two closely positioned point mutations in Smo, we characterized NeuroD2-SmoA2 mice and compared them to NeuroD2-SmoA1 mice. While both SmoA1 and SmoA2 transgenes cause medulloblastoma with similar frequencies and timing, SmoA2 mice have severe aberrations in cerebellar development, whereas SmoA1 mice are largely normal during development. Intriguingly, neurologic function, as measured by specific tests, is normal in the SmoA2 mice despite extensive cerebellar dysplasia. We demonstrate how two nearly contiguous point mutations in the same domain of the encoded Smo protein can produce striking phenotypic differences in cerebellar development and organization in mice.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellum/abnormalities , Disease Models, Animal , Medulloblastoma/genetics , Mice , Receptors, G-Protein-Coupled/genetics , Animals , Humans , Mice, Transgenic , Point Mutation , Proto-Oncogene Mas , Smoothened Receptor
8.
Cancer Res ; 68(6): 1768-76, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18339857

ABSTRACT

Toward the goal of generating a mouse medulloblastoma model with increased tumor incidence, we developed a homozygous version of our ND2:SmoA1 model. Medulloblastomas form in 94% of homozygous Smo/Smo mice by 2 months of age. Tumor formation is, thus, predictable by age, before the symptomatic appearance of larger lesions. This high incidence and early onset of tumors is ideal for preclinical studies because mice can be enrolled before symptom onset and with a greater latency period before late-stage disease. Smo/Smo tumors also display leptomeningeal dissemination of neoplastic cells to the brain and spine, which occurs in many human cases. Despite an extended proliferation of granule neuron precursors (GNP) in the postnatal external granular layer (EGL), the internal granular layer formed normally in Smo/Smo mice and tumor formation occurred only in localized foci on the superficial surface of the molecular layer. Thus, tumor formation is not simply the result of over proliferation of GNPs within the EGL. Moreover, Smo/Smo medulloblastomas were transplantable and serially passaged in vivo, demonstrating the aggressiveness of tumor cells and their transformation beyond a hyperplastic state. The Smo/Smo model is the first mouse medulloblastoma model to show leptomeningeal spread. The adherence to human pathology, high incidence, and early onset of tumors thus make Smo/Smo mice an efficient model for preclinical studies.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Meningeal Neoplasms/pathology , Receptors, G-Protein-Coupled/genetics , Animals , Disease Models, Animal , Meningeal Neoplasms/genetics , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Smoothened Receptor , Transgenes
9.
Cancer Res ; 66(17): 8655-61, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16951180

ABSTRACT

We examined the genetic requirements for the Myc family of oncogenes in normal Sonic hedgehog (Shh)-mediated cerebellar granule neuronal precursor (GNP) expansion and in Shh pathway-induced medulloblastoma formation. In GNP-enriched cultures derived from N-myc(Fl/Fl) and c-myc(Fl/Fl) mice, disruption of N-myc, but not c-myc, inhibited the proliferative response to Shh. Conditional deletion of c-myc revealed that, although it is necessary for the general regulation of brain growth, it is less important for cerebellar development and GNP expansion than N-myc. In vivo analysis of compound mutants carrying the conditional N-myc null and the activated Smoothened (ND2:SmoA1) alleles showed, that although granule cells expressing the ND2:SmoA1 transgene are present in the N-myc null cerebellum, no hyperproliferation or tumor formation was detected. Taken together, these findings provide in vivo evidence that N-myc acts downstream of Shh/Smo signaling during GNP proliferation and that N-myc is required for medulloblastoma genesis even in the presence of constitutively active signaling from the Shh pathway.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellum/cytology , Genes, myc , Hedgehog Proteins/physiology , Medulloblastoma/genetics , Animals , Cell Division , Cerebellar Neoplasms/pathology , Cerebellum/pathology , Child , Humans , Kinetics , Medulloblastoma/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL