Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Chem Biol ; 14(7): 730-737, 2018 07.
Article in English | MEDLINE | ID: mdl-29867143

ABSTRACT

Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.


Subject(s)
Coenzyme A Ligases/metabolism , Biocatalysis , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/isolation & purification , Esters/chemistry , Esters/metabolism , Models, Molecular , Molecular Structure , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
2.
J Am Chem Soc ; 138(34): 10905-15, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27490479

ABSTRACT

Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αßγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (ßγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Organophosphates/metabolism , Streptomyces/enzymology , Catalytic Domain , Models, Molecular
3.
J Synchrotron Radiat ; 22(6): 1386-95, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524303

ABSTRACT

A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.


Subject(s)
Crystallization/instrumentation , Crystallography, X-Ray/instrumentation , Protein Array Analysis/instrumentation , Proteins/chemistry , Proteins/ultrastructure , Computer Simulation , Equipment Design , Equipment Failure Analysis , Models, Chemical , Models, Molecular , Phase Transition
4.
Biochem J ; 459(1): 59-69, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24438162

ABSTRACT

GAK (cyclin G-associated kinase) is a key regulator of clathrin-coated vesicle trafficking and plays a central role during development. Additionally, due to the unusually high plasticity of its catalytic domain, it is a frequent 'off-target' of clinical kinase inhibitors associated with respiratory side effects of these drugs. In the present paper, we determined the crystal structure of the GAK catalytic domain alone and in complex with specific single-chain antibodies (nanobodies). GAK is constitutively active and weakly associates in solution. The GAK apo structure revealed a dimeric inactive state of the catalytic domain mediated by an unusual activation segment interaction. Co-crystallization with the nanobody NbGAK_4 trapped GAK in a dimeric arrangement similar to the one observed in the apo structure, whereas NbGAK_1 captured the activation segment of monomeric GAK in a well-ordered conformation, representing features of the active kinase. The presented structural and biochemical data provide insight into the domain plasticity of GAK and demonstrate the utility of nanobodies to gain insight into conformational changes of dynamic molecules. In addition, we present structural data on the binding mode of ATP mimetic inhibitors and enzyme kinetic data, which will support rational inhibitor design of inhibitors to reduce the off-target effect on GAK.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/physiology , Protein Multimerization/physiology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/physiology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/physiology , Animals , Apoproteins/chemistry , Apoproteins/physiology , Camelus , Catalytic Domain/physiology , Crystallization/methods , Enzyme Activation/physiology , Humans , Protein Conformation
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 451-63, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23519420

ABSTRACT

In lactic acid bacteria and other bacteria, carbohydrate uptake is mostly governed by phosphoenolpyruvate-dependent phosphotransferase systems (PTSs). PTS-dependent translocation through the cell membrane is coupled with phosphorylation of the incoming sugar. After translocation through the bacterial membrane, the ß-glycosidic bond in 6'-P-ß-glucoside is cleaved, releasing 6-P-ß-glucose and the respective aglycon. This reaction is catalyzed by 6-P-ß-glucosidases, which belong to two glycoside hydrolase (GH) families: GH1 and GH4. Here, the high-resolution crystal structures of GH1 6-P-ß-glucosidases from Lactobacillus plantarum (LpPbg1) and Streptococcus mutans (SmBgl) and their complexes with ligands are reported. Both enzymes show hydrolytic activity towards 6'-P-ß-glucosides. The LpPbg1 structure has been determined in an apo form as well as in a complex with phosphate and a glucose molecule corresponding to the aglycon molecule. The S. mutans homolog contains a sulfate ion in the phosphate-dedicated subcavity. SmBgl was also crystallized in the presence of the reaction product 6-P-ß-glucose. For a mutated variant of the S. mutans enzyme (E375Q), the structure of a 6'-P-salicin complex has also been determined. The presence of natural ligands enabled the definition of the structural elements that are responsible for substrate recognition during catalysis.


Subject(s)
Glucosidases/chemistry , Lactobacillus plantarum/enzymology , Metagenome , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Streptococcus mutans/enzymology , Crystallography, X-Ray , Glucosidases/genetics , Glucosidases/metabolism , Humans , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Ligands , Streptococcus mutans/genetics
6.
Methods ; 55(1): 12-28, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21907284

ABSTRACT

The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.


Subject(s)
Chromatography, Affinity/methods , Chromatography, Gel/methods , Crystallography, X-Ray/methods , High-Throughput Screening Assays , Proteomics/methods , Recombinant Proteins/chemistry , Automation, Laboratory , Crystallization , Endopeptidases/metabolism , Escherichia coli/genetics , Humans , Magnetic Resonance Spectroscopy , Protein Folding , Recombinant Proteins/genetics
7.
IUCrJ ; 6(Pt 4): 649-664, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316809

ABSTRACT

Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and ß (TrpB), functioning as a linear αßßα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the ß-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.

8.
Structure ; 27(3): 449-463.e7, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30595457

ABSTRACT

Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species. Thus, the natural spectrum of Hsp104/ClpB molecular architectures and protein-remodeling activities remains largely unexplored. Here, we report two structures of Hsp104 from the thermophilic fungus Calcarisporiella thermophila (CtHsp104), a 2.70Å crystal structure and 4.0Å cryo-electron microscopy structure. Both structures reveal left-handed, helical assemblies with all domains clearly resolved. We thus provide the highest resolution and most complete view of Hsp104 hexamers to date. We also establish that CtHsp104 antagonizes several toxic protein-misfolding events in vivo where S. cerevisiae Hsp104 is ineffective, including rescue of TDP-43, polyglutamine, and α-synuclein toxicity. We suggest that natural Hsp104 variation is an invaluable, untapped resource for illuminating therapeutic disaggregases for fatal neurodegenerative diseases.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/pharmacology , Mucorales/enzymology , Cryoelectron Microscopy , Crystallography, X-Ray , DNA-Binding Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/pharmacology , Humans , Models, Molecular , Peptides/antagonists & inhibitors , Protein Conformation, alpha-Helical , Proteostasis Deficiencies/prevention & control , alpha-Synuclein/antagonists & inhibitors
9.
Methods Mol Biol ; 1140: 189-200, 2014.
Article in English | MEDLINE | ID: mdl-24590719

ABSTRACT

The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.


Subject(s)
Crystallography, X-Ray , Molecular Biology/methods , Proteins/chemistry , Alkylation , Computational Biology , Crystallization , High-Throughput Screening Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL