Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Rinsho Ketsueki ; 65(4): 249-254, 2024.
Article in Japanese | MEDLINE | ID: mdl-38684435

ABSTRACT

Myelodysplastic syndromes (MDS) are a group of heterogenous hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis in which clonal progenitor expansion occurs alongside impaired myelopoiesis. Inflammatory signaling activation due to dysregulated innate immunity is also a hallmark of MDS pathogenesis. We recently established a useful preclinical tool that recapitulates bona fide MDS phenotypes and gene expression profiles based on previously unreported co-mutations discovered during our clinical surveillance of mutations in patients with MDS. Notably, we focused unbiased transcriptome analysis on determining the distinct underlying mediators of MDS etiology, and identified excessive mitochondrial fission-mediated fragmentation in mutant HSCs and progenitors (HSC/Ps). We confirmed excessive mitochondrial fragmentation in HSC/Ps obtained from patients with MDS regardless of the mutational profile. Importantly, in vivo pharmacological inhibition of mitochondrial fission significantly attenuated inflammatory signaling activation, dysplasia formation and ineffective hematopoiesis phenotype, and prolonged survival of MDS mice, suggesting that excessive mitochondrial fragmentation could be a fundamental trigger of MDS pathogenesis. These findings provide new insights into the mechanistic basis of ineffective hematopoiesis, and a clue for targeting bone marrow failure caused by ineffective hematopoiesis in MDS.


Subject(s)
Mitochondria , Myelodysplastic Syndromes , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/genetics , Humans , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mutation
2.
Cancer Sci ; 114(7): 2722-2728, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026511

ABSTRACT

Myeloid malignancies, including myelodysplastic syndromes and acute myeloid leukemia, are a group of clonal hematopoietic stem cell (HSC) diseases. The incidence increases with global population aging. Genome sequencing uncovered mutational profiles in patients with myeloid malignancies and healthy elderly individuals. However, the molecular and cellular basis of disease development remains unclear. Accumulating evidence shows mitochondrial involvement in the pathogenesis of myeloid malignancies, aging-related HSC phenotypes, and clonal hematopoiesis. Mitochondria are dynamic organelles that continuously undergo fission and fusion processes to maintain their function, integrity, and activity. Mitochondria could be a hub of various biological processes that underlie cellular and systemic homeostasis. Thus, mitochondrial dysfunction could directly lead to the disruption of cellular homeostasis and the development of various disorders, including cancer. Notably, emerging data have revealed that mitochondria dynamics also primarily affect not only mitochondrial function and activity but also cellular homeostasis, the aging process, and tumorigenesis. Here, by focusing on mitochondrial dynamics, we highlight the current understanding of mitochondrial roles as a pathobiological mediator of myeloid malignancies and aging-related clonal hematopoiesis.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Mitochondrial Dynamics , Hematopoiesis/genetics , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology
3.
J Chem Inf Model ; 63(17): 5539-5548, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37604495

ABSTRACT

Recent advances in machine learning have led to the rapid adoption of various computational methods for de novo molecular design in polymer research, including high-throughput virtual screening and inverse molecular design. In such workflows, molecular generators play an essential role in creation or sequential modification of candidate polymer structures. Machine learning-assisted molecular design has made great technical progress over the past few years. However, the difficulty of identifying synthetic routes to such designed polymers remains unresolved. To address this technical limitation, we present Small Molecules into Polymers (SMiPoly), a Python library for virtual polymer generation that implements 22 chemical rules for commonly applied polymerization reactions. For given small organic molecules to form a candidate monomer set, the SMiPoly generator conducts possible polymerization reactions to generate an exhaustive list of potentially synthesizable polymers. In this study, using 1083 readily available monomers, we generated 169,347 unique polymers forming seven different molecular types: polyolefin, polyester, polyether, polyamide, polyimide, polyurethane, and polyoxazolidone. By comparing the distribution of the virtually created polymers with approximately 16,000 real polymers synthesized so far, it was found that the coverage and novelty of the SMiPoly-generated polymers can reach 48 and 53%, respectively. Incorporating the SMiPoly library into a molecular design workflow will accelerate the process of de novo polymer synthesis by shortening the step to select synthesizable candidate polymers.


Subject(s)
Libraries, Digital , Polymers , Polymerization , Gene Library , High-Throughput Screening Assays
4.
Chem Pharm Bull (Tokyo) ; 71(8): 665-669, 2023.
Article in English | MEDLINE | ID: mdl-37532537

ABSTRACT

The time-domain NMR technique was utilized to monitor precisely the physicochemical stability of indomethacin (IMC) nanosuspensions using T2 relaxation time (T2). We investigated whether T2 values can distinguish between agglomeration and sedimentation. Nanosuspensions of IMC were prepared using aqueous wet bead milling with polyvinylpyrrolidone as a stabilizer. Prepared nanosuspensions were divided into two fractions: one was stored in the NMR equipment for continuous T2 measurements and the other was stored in the dispersion analyzer. Measurements of both nanosuspensions were carried out, without dilution, over a period of 24 h at 10-min intervals. Transmission profiles based on multilight scattering technology showed that agglomeration predominantly occurred at 25 and 35 °C immediately after wet bead milling up to 4 h, followed by sedimentation from 4 to 24 h. Upon measuring the T2 relaxation, T2 values at both 25 and 35 °C showed a two-step change-there was a significant prolongation in T2 values immediately after preparation of nanosuspensions up to approx. 4 h and a gradual prolongation in T2 values from approx. 4 to 24 h. Considering the results of transmission profiles, these two-step T2 changes correspond to agglomeration and sedimentation. In other words, this study established that monitoring the T2 values of nanosuspensions could be used to evaluate the agglomeration and sedimentation of contained drug particles. This technique does not directly observe the nanoparticles themselves, but the water molecules. Thus, measurement of T2 relaxation is considered to be a general-purpose technique, independent of the type of drug or polymer.


Subject(s)
Indomethacin , Nanoparticles , Indomethacin/chemistry , Particle Size , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Nanoparticles/chemistry , Suspensions , Solubility
5.
Chem Pharm Bull (Tokyo) ; 71(6): 406-415, 2023.
Article in English | MEDLINE | ID: mdl-37258193

ABSTRACT

The purpose of this study was to develop a model for predicting tablet properties after an accelerated test and to determine whether molecular descriptors affect tablet properties. Tablets were prepared using 81 types of active pharmaceutical ingredients, with the same formulation and three different levels of compression pressure. The tablet properties measured were the tensile strength and disintegration time of tablets after two weeks of accelerated test. The material properties measured were the change in tablet thickness before and after the accelerated test, maximum swelling force, swelling time, and swelling rate. The acquired data were added to our previously constructed database containing a total of 20 material properties and 3381 molecular descriptors. The feature importance values of molecular descriptors, material properties and the compression pressure for each tablet property were calculated by random forest, which is one type of machine learning (ML) that uses ensemble learning and decision trees. The results showed that more than half of the top 25 most important features were molecular descriptors for both tablet properties, indicating that molecular descriptors are strongly related to tablet properties. A prediction model of tablet properties was constructed by eight ML types using 25 of the most important features. The results showed that the boosted neural network exhibited the best prediction accuracy and was able to predict tablet properties with high accuracy. A data-driven approach is useful for discovering intricate relationships hidden within complex and large data sets and predicting tablet properties after an accelerated test.


Subject(s)
Machine Learning , Neural Networks, Computer , Tablets , Tensile Strength , Databases, Factual
6.
Chem Pharm Bull (Tokyo) ; 71(7): 576-583, 2023.
Article in English | MEDLINE | ID: mdl-37394606

ABSTRACT

Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.


Subject(s)
Polyethylene Glycols , Water , Delayed-Action Preparations , Polyethylene Glycols/chemistry , Magnetic Resonance Spectroscopy , Tablets , Hypromellose Derivatives/chemistry , Solubility , Methylcellulose/chemistry
7.
Med Mol Morphol ; 56(4): 257-265, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37526656

ABSTRACT

Liver cancer is one of the most prevalent cancers in Japan with hepatocellular carcinoma (HCC) as the major histological subtype. Successful novel treatments for HCC have been reported; however, recurrences or metastasis may occur, which results in poor prognoses and high mortality of HCC patients. Fascin, an actin-bundling protein, regulates cell adhesion, migration, and invasion. Its overexpression positively correlates with poor prognosis of malignant tumors, and Fascin is considered as one of the tumor biomarkers and therapeutic target proteins. In this study, we attempted to reveal the relationship between Fascin and HCC using HLE, one of the human HCC cell lines. We performed the study with classical immunocytochemistry and recently developed techniques, such as wound-healing assay, spheroid cultivation, and low-vacuum scanning electron microscopy (LV-SEM). Non-Fascin-knockdown (FKD) cell spheroid had a regular spherical appearance with tight cell-cell connections, while FKD cell spheroid had an irregular shape with loose cell-cell connections. Cells of non-FKD spheroid presented fibrous protrusions on the cell surface, contrarily, cells of FKD spheroids showed bulbous-shaped protrusions. Morphological observation of FKD and non-FKD HLE spheroids were performed using LV-SEM. Our study may help to reveal the roles of Fascin in the process of HCC formation and its malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Microscopy, Electron, Scanning , Vacuum , Neoplasm Invasiveness , Cell Line, Tumor , Cell Movement
8.
Angew Chem Int Ed Engl ; 62(24): e202303494, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37058001

ABSTRACT

Post-synthesis modification of polymers streamlines the synthesis of functionalized polymers, but is often incomplete due to the negative polymer effects. Developing efficient polymer reactions in artificial systems thus represents a long-standing objective in the fields of polymer and material science. Here, we show unprecedented macrocycle-metal-complex-catalyzed systems for efficient polymer reaction that result in 100 % transformation of the main chain functional groups presumably via a processive mode reaction. The complete polymer reactions were confirmed in not only intramolecular reaction (hydroamination) but also intermolecular reaction (hydrosilylation) by using Pd- and Pt-macrocycle-catalyzed systems. The most fascinating feature of the both reactions is that higher-molecular-weight polymers reach completion faster. Various studies suggested that the reactions occur in the catalyst cavity via the formation of a supramolecular complex between the macrocycle catalyst and polymer substrate like pseudorotaxane, which should be of characteristic of the efficient polymer reactions progressing in a processive mode.

9.
FASEB J ; 35(10): e21904, 2021 10.
Article in English | MEDLINE | ID: mdl-34569650

ABSTRACT

Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.


Subject(s)
Antigens, Differentiation/biosynthesis , Blastocyst/metabolism , Cell Lineage , Embryonic Development , Gene Expression Regulation, Developmental , Animals , Cattle
10.
Chem Pharm Bull (Tokyo) ; 70(8): 550-557, 2022.
Article in English | MEDLINE | ID: mdl-35908921

ABSTRACT

The crystalline state of ibuprofen (IBU) confined in mesoporous silica was characterized using low-field time-domain nuclear magnetic resonance (TD-NMR). IBU was loaded into ordered (Santa Barbara Amorphous-15 [SBA-15]; SBA) or nonordered mesoporous silica (Sylysia 320; SYL) using a well-known incipient wetness impregnation method. The dissolution profile of IBU from the silica was measured. The IBU-loaded SBA showed a relatively higher drug concentration at 10 and 20 min, which was typical of a supersaturated solution. However, it did not maintain that concentration. By contrast, the IBU-loaded SYL did not show such a dissolution profile in the early stage. To characterize the crystalline state of IBU confined in silica, the T1 relaxation time of IBU-loaded silica powder was measured and analyzed by curve fitting. Monophasic T1 relaxation was observed for IBU-loaded SBA. This may indicate that the amorphous phase, which has various molecular mobilities, was close to within the length of 1H spin diffusion. The TD-NMR technique, even if the sample is powder, can rapidly and easily measure NMR relaxation. Therefore, it can be useful toward fully characterizing the crystalline state of drugs confined in mesopores.


Subject(s)
Ibuprofen , Silicon Dioxide , Ibuprofen/chemistry , Magnetic Resonance Spectroscopy , Porosity , Powders , Silicon Dioxide/chemistry
11.
Chem Pharm Bull (Tokyo) ; 70(2): 162-168, 2022.
Article in English | MEDLINE | ID: mdl-35110437

ABSTRACT

NMR relaxometry measurement by time domain NMR (TD-NMR) is a promising technique for characterizing the properties of active pharmaceutical ingredients (APIs). This study is dedicated to identifying the salt and free base of APIs by NMR relaxometry measured by the TD-NMR technique. Procaine (PC) and tetracaine (TC) were selected as model APIs to be tested. By using conventional methods including powder X-ray diffraction and differential scanning calorimetry, this study first confirmed that the salt and free base of the tested APIs differ from each other in their crystalline form. Subsequently, measurements of T1 and T2 relaxation were performed on the tested APIs using TD-NMR. The results demonstrated that these NMR relaxometry measurements have sufficient capacity to distinguish the difference between the free base and salt of the tested APIs. Furthermore, quantification of the composition of the binary powder blends consisting of salt and free bases was conducted by analyzing the acquired T1 and T2 relaxation curves. The analysis of the T1 relaxation curves provided a partly acceptable estimation: a good estimation of the composition was observed from PC powders, whereas for TC powders the estimation accuracy changed with the free base content in the binary blends. For the analysis on T2 relaxation curves, a precise estimation of the composition was observed from all the samples. From these findings, the NMR relaxometry measurement by TD-NMR, in particular the T2 relaxation measurement, is effective for evaluating the properties of APIs having different crystalline forms.


Subject(s)
Pharmaceutical Preparations/analysis , Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Salts/analysis , Time Factors , X-Ray Diffraction
12.
Chem Pharm Bull (Tokyo) ; 70(8): 558-565, 2022.
Article in English | MEDLINE | ID: mdl-35908922

ABSTRACT

Hardness is a critical quality characteristic of pharmaceutical oral jelly. In this study, the hardness was determined by using the T2 relaxation curves measured by time-domain NMR. For sample preparation, kappa- and iota-carrageenans, and locust bean gum, were used as gel-forming agents. Ten test jellies with different gel-forming agent composition were prepared, and their hardness and T2 relaxation curves were measured by a texture analyzer and time-domain NMR (TD-NMR). A negative correlation between T2 relaxation time (T2) and hardness was observed; however, it was difficult to determine the hardness directly from the T2 value. That is probably because the T2 relaxation curve contains information about molecular states, not only of water but also of the solute, and T2 values calculated by single-exponential curve fitting only express one property of the test jelly. By considering this issue, partial least squares (PLS) regression analysis was performed on the T2 relaxation curves for hardness determination of the test jellies. According to the analysis, an accurate and reliable PLS model was created that enabled accurate assessment of the hardness of the test jellies. TD-NMR enables the measurement of samples nondestructively and rapidly with low cost, and so could be a promising method for evaluation of the hardness of pharmaceutical oral jellies.


Subject(s)
Magnetic Resonance Imaging , Water , Gels , Hardness , Magnetic Resonance Spectroscopy/methods , Water/chemistry
13.
Med Mol Morphol ; 55(2): 100-109, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35048195

ABSTRACT

Both fascin and fibronectin are known to play important roles in cell adhesion and migration. They are noted as tumor markers or inhibiting target for tumor treatment. In this study, embryonic rat livers were obtained to examine the expression of fascin and fibronectin during liver development. Then, the effect of fibronectin on fascin expression was investigated. At embryonic day (ED) 10.5, when the foregut endoderm began to form the liver bud and spread into the septum transversum, fibrous extracellular matrix was observed between the space where the liver bud and the septum transversum merged. At ED11.5, fibronectin was observed surrounding the cluster of fascin-positive hepatoblasts. At ED13.5, hematopoietic cells emerged and both fibronectin and fascin expression started to decline. Fascin and fibronectin appeared temporarily and disappeared by ED 14.5. Their expression was chronologically synchronized. Subsequently, the effect of fibronectin on fascin was examined by cultivation of hepatoblasts that were isolated from the ED13.5 rat liver. As a result, with fibronectin, fascin was positive in most hepatoblasts, although, without fibronectin, fascin expression was remarkably declined. Presently, there are few studies about the relationship between fascin and fibronectin. Our findings suggest that fibronectin could regulate fascin expression in rat hepatoblasts.


Subject(s)
Fibronectins , Liver , Animals , Carrier Proteins , Cell Adhesion/physiology , Extracellular Matrix/metabolism , Fibronectins/metabolism , Liver/metabolism , Microfilament Proteins , Rats
14.
J Am Chem Soc ; 142(3): 1621-1629, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31868360

ABSTRACT

A Lewis base catalyst Trip-SMe (Trip = triptycenyl) for electrophilic aromatic halogenation using N-halosuccinimides (NXS) is introduced. In the presence of an appropriate activator (as a noncoordinating-anion source), a series of unactivated aromatic compounds were halogenated at ambient temperature using NXS. This catalytic system was applicable to transformations that are currently unachievable except for the use of Br2 or Cl2: e.g., multihalogenation of naphthalene, regioselective bromination of BINOL, etc. Controlled experiments revealed that the triptycenyl substituent exerts a crucial role for the catalytic activity, and kinetic experiments implied the occurrence of a sulfonium salt [Trip-S(Me)Br][SbF6] as an active species. Compared to simple dialkyl sulfides, Trip-SMe exhibited a significant charge-separated ion pair character within the halonium complex whose structural information was obtained by the single-crystal X-ray analysis. A preliminary computational study disclosed that the π system of the triptycenyl functionality is a key motif to consolidate the enhancement of electrophilicity.

15.
Cancer Sci ; 111(5): 1851-1855, 2020 May.
Article in English | MEDLINE | ID: mdl-32216001

ABSTRACT

Gene rearrangements of MLL/KMT2A or RUNX1 are the major cause of therapy-related leukemia. Moreover, MLL rearrangements are the major cause of infant leukemia, and RUNX1 rearrangements are frequently detected in cord blood. These genes are sensitive to topoisomerase II inhibitors, and various genes have been identified as potential fusion partners. However, fetal exposure to these inhibitors is rare. Therefore, we postulated that even a proliferation signal itself might induce gene rearrangements in hematopoietic stem cells. To test this hypothesis, we detected gene rearrangements in etoposide-treated or non-treated CD34+ cells cultured with cytokines using inverse PCR. In the etoposide-treated cells, variable-sized rearrangement bands were detected in the RUNX1 and MLL genes at 3 hours of culture, which decreased after 7 days. However, more rearrangement bands were detected in the non-treated cells at 7 days of culture. Such gene rearrangements were also detected in peripheral blood stem cells mobilized by cytokines for transplantation. However, none of these rearranged genes encoded the leukemogenic oncogene, and the cells with rearrangements did not expand. These findings suggest that MLL and RUNX1 rearrangements, which occur with very low frequency in normal hematopoietic progenitor cells, may be induced under cytokine stimulation. Most of the cells with gene rearrangements are likely eliminated, except for leukemia-associated gene rearrangements, resulting in the low prevalence of leukemia development.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Cytokines/pharmacology , Gene Rearrangement/drug effects , Hematopoietic Stem Cells/drug effects , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Aged , Cell Survival/drug effects , Cells, Cultured , Etoposide/pharmacology , Hematopoietic Stem Cells/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Middle Aged , Peripheral Blood Stem Cells/drug effects , Peripheral Blood Stem Cells/metabolism , Topoisomerase II Inhibitors/pharmacology
16.
J Chem Inf Model ; 60(7): 3499-3507, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32551637

ABSTRACT

The molecular dynamics (MD) technique to accelerate simulation of phase transition to liquid-crystalline (LC) phases is demonstrated on the model LC system 4-octyl-4'-cyanobiphenyl (8CB) smectic A phase. Simulation of a phase transition to a smectic phase is challenging because an intrinsically long simulation time and large system size are required owing to the high order and low onset temperature. Acceleration of the simulated transition of 8CB to the smectic A phase was ultimately achieved by selectively weakening the intermolecular Lennard-Jones interaction of alkyl chains and then returning the scaled interaction to the unscaled one. The total time needed to form the smectic A phase using selectively scaled and returned molecular dynamics (ssrMD) was five times shorter than that when using unscaled MD. Formation of the smectic A phase occurred only when induced polarization from the antiparallel dipole dimer point charge was included in the simulation. The use of ssrMD presented herein is anticipated to accelerate the theoretical development of self-assembled organic materials containing both rigid and flexible moieties, including LC materials.


Subject(s)
Liquid Crystals , Molecular Dynamics Simulation , Acceleration , Phase Transition , Polymers
17.
Acta Med Okayama ; 74(4): 335-343, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32843765

ABSTRACT

Since the discovery of the NAB2-STAT6 gene fusion in 2013, solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) have been considered the same disease. STAT6 nuclear stain is approved as a highly sensitive and specific marker to diagnose SFT/HPC from other tumors with similar histology. As the next step, detection of fusion variants that may predict clinical malignancy of SFT/HPC has been attempted. However, no fusion variants with a clear relation to malignancy have been identified. In this study, the clinical and histological backgrounds of 23 Japanese patients diagnosed with SFT/HPC from 2000 to 2019 at Kochi University Hospital were examined to identify factors potentially related to recurrence. A significant relationship to recurrence was detected for mitosis ≥ 1/10 HPF (400×), necrosis, and Ki-67>5%. These findings indicate that a deliberate investigation of histological features such as mitosis and necrosis is crucial for the clinical observation of SFT/ HPC patients. In addition, Ki-67 was revealed to be a useful parameter to predict recurrence in SFT/HPC patients.


Subject(s)
Hemangiopericytoma/pathology , Neoplasm Recurrence, Local/diagnosis , Solitary Fibrous Tumors/pathology , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Hemangiopericytoma/diagnosis , Hemangiopericytoma/genetics , Humans , Ki-67 Antigen , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Solitary Fibrous Tumors/diagnosis , Solitary Fibrous Tumors/genetics
18.
Angew Chem Int Ed Engl ; 59(31): 12925-12930, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32274844

ABSTRACT

The development of a robust amide-bond formation remains a critical aspect of N-methylated peptide synthesis. In this study, we synthesized a variety of dipeptides in high yields, without severe racemization, from equivalent amounts of amino acids. Highly reactive N-methylimidazolium cation species were generated in situ to accelerate the amidation. The key to success was the addition of a strong Brønsted acid. The developed amidation enabled the synthesis of a bulky peptide with a higher yield in a shorter amount of time compared with the results of conventional amidation. In addition, the amidation can be performed by using either a microflow reactor or a conventional flask. The first total synthesis of naturally occurring bulky N-methylated peptides, pterulamides I-IV, was achieved. Based on experimental results and theoretical calculations, we speculated that a Brønsted acid would accelerate the rate-limiting generation of acyl imidazolium cations from mixed carbonic anhydrides.


Subject(s)
Dipeptides/chemical synthesis , Hydrochloric Acid/chemistry , Imidazoles/chemistry , Stereoisomerism
19.
Cancer Sci ; 110(5): 1510-1517, 2019 May.
Article in English | MEDLINE | ID: mdl-30844107

ABSTRACT

Since the first identification of hypoxic cells in sections of carcinomas in the 1950s, hypoxia has been known as a central hallmark of cancer cells and their microenvironment. Indeed, hypoxia benefits cancer cells in their growth, survival, and metastasis. The historical discovery of hypoxia-inducible factor-1α (HIF1A) in the early 1990s had a great influence on the field as many phenomena in hypoxia could be explained by HIF1A. However, not all regions or types of tumors are necessarily hypoxic. Thus, it is difficult to explain whole cancer pathobiology by hypoxia, especially in the early stage of cancer. Upregulation of glucose metabolism in cancer cells has been well known. Oxygen-independent glycolysis is activated in cancer cells even in the normoxia condition, which is known as the Warburg effect. Accumulating evidence and recent advances in cancer metabolism research suggest that hypoxia-independent mechanisms for HIF signaling activation is a hallmark for cancer. There are various mechanisms that generate pseudohypoxic conditions, even in normoxia. Given the importance of HIF1A for cancer pathobiology, the pseudohypoxia concept could shed light on the longstanding mystery of the Warburg effect and accelerate better understanding of the diverse phenomena seen in a variety of cancers.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/metabolism , Cell Hypoxia , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Lactic Acid/metabolism , Neoplasms/genetics , Protein Stability , Pyruvic Acid/metabolism , Signal Transduction
20.
Org Biomol Chem ; 18(1): 93-101, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31796945

ABSTRACT

Thirteen readily accessible azo D-π-A dyes, intended for use as photothermal agents, were synthesized using only a few steps. Absorption wavelengths were readily tuned by changing the building blocks, and 6 of these dyes exhibited NIR absorption that would be useful for biomedical applications. Unexpected suppression of an N-C single bond rotation that neighbors the azo bond was observed in the case of 5 dyes. Photothermal conversion efficiency measurements revealed a significant effect of the D moiety in these synthesized azo D-π-A dyes, but neither the π moiety nor the A moiety showed an obvious influence. The obtained results offer valuable information for the design of high-performance azo D-π-A dyes that have utility as photothermal agents.

SELECTION OF CITATIONS
SEARCH DETAIL