Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Mar Drugs ; 21(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36827131

ABSTRACT

Bioactive peptides range in size from 2-30 amino acids and may be derived from any protein-containing biomass using hydrolysis, fermentation or high-pressure processing. Pro-peptides or cryptides result in shorter peptide sequences following digestion and may have enhanced bioactivity. Previously, we identified a protein hydrolysate generated from Laminaria digitata that inhibited ACE-1 in vitro and had an ACE-1 IC50 value of 590 µg/mL compared to an ACE-1 IC50 value of 500 µg/mL (~2.3 µM) observed for the anti-hypertensive drug Captopril©. A number of peptide sequences (130 in total) were identified using mass spectrometry from a 3 kDa permeate of this hydrolysate. Predicted bioactivities for these peptides were determined using an in silico strategy previously published by this group utilizing available databases including Expasy peptide cutter, BIOPEP and Peptide Ranker. Peptide sequences YIGNNPAKGGLF and IGNNPAKGGLF had Peptide Ranker scores of 0.81 and 0.80, respectively, and were chemically synthesized. Synthesized peptides were evaluated for ACE-1 inhibitory activity in vitro and were found to inhibit ACE-1 by 80 ± 8% and 91 ± 16%, respectively. The observed ACE-1 IC50 values for IGNNPAKGGLF and YIGNNPAKGGLF were determined as 174.4 µg/mL and 133.1 µg/mL. Both peptides produced sequences following simulated digestion with the potential to inhibit Dipeptidyl peptidase IV (DPP-IV).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Laminaria , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Protein Hydrolysates/chemistry , Laminaria/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptides/pharmacology , Angiotensins
2.
Mar Drugs ; 21(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623703

ABSTRACT

Inflammation, hypertension, and negative heart health outcomes including cardiovascular disease are closely linked but the mechanisms by which inflammation can cause high blood pressure are not yet fully elucidated. Cyclooxygenase (COX) enzymes play a role in pain, inflammation, and hypertension development, and inhibition of these enzymes is currently of great interest to researchers and pharmaceutical companies. Non-steroidal anti-inflammatory drugs are the drug of choice in terms of COX inhibition but can have negative side effects for consumers. Functional food ingredients containing cyclooxygenase inhibitors offer a strategy to inhibit cyclooxygenases without negative side effects. Several COX inhibitors have been discovered, to date, from marine and other resources. We describe here, for the first time, the generation and characterization of a bioactive hydrolysate generated using Viscozyme® and Alcalase from the red microalga Porphyridium sp. The hydrolysate demonstrates in vitro COX-1 inhibitory activity and antihypertensive activity in vivo, assessed using spontaneously hypertensive rats (SHRs). Peptides were identified and sequenced using MS and assessed using an in silico computational approach for potential bioactivities. The peptides predicted to be bioactive, including GVDYVRFF, AIPAAPAAPAGPKLY, and LIHADPPGVGL were chemically synthesized and cyclooxygenase inhibition was confirmed. Peptides AIPAAPAAPAGPKLY and LIHADPPGVGL had COX-1 IC50 values of 0.2349 mg/mL (0.16 µM) and 0.2193 mg/mL (0.2 µM), respectively. The hydrolysate was included in a food carrier (jelly candies) and an antihypertensive effect was observed in SHRs.


Subject(s)
Hypertension , Porphyridium , Animals , Rats , Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Hypertension/prevention & control , Inflammation/drug therapy , Inflammation/prevention & control , Pain , Cyclooxygenase 2 , Cyclooxygenase Inhibitors , Peptides/pharmacology
3.
Mar Drugs ; 19(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201794

ABSTRACT

Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.


Subject(s)
Gastrointestinal Microbiome , Seaweed , Aquatic Organisms , Humans , Prebiotics
4.
J Cardiovasc Nurs ; 36(4): E1-E10, 2021.
Article in English | MEDLINE | ID: mdl-33833191

ABSTRACT

BACKGROUND: The implementation of international guidelines within everyday practice remains problematic, which can have a detrimental impact on quality of care delivered. This study aimed to ascertain the factors associated with clinical nurses' perceived knowledge of international guidelines. METHODS: In this cross-sectional survey, nurses from 45 hospitals across Ireland were recruited. A previously validated anonymous questionnaire that assessed guideline knowledge, use, and barriers to implementation was used. Data were analyzed using SPSS 23 and logistic regression. RESULTS: Of the 542 responses, 54% had used international guidelines relevant to their practice and 50% had consulted within the last year. Most nurses perceived that poor patient follow-up, lack of time and resources, poor clinical leadership, workload, long guidelines, and not understanding guideline detail were barriers to guideline use and implementation. Forty-five percent rated their perceived knowledge of guidelines as "low." Logistic regression identified that "high" knowledge levels were significantly associated with having read guidelines in the last year and their use with practice. In contrast, low knowledge of the guidelines was associated with perceptions that they were lengthy and not easy to use, lack of confidence to challenge colleagues when guidelines are not implemented, or not being able to influence current practice. CONCLUSIONS: This study identified the specific knowledge needs in this cohort of mainly basic grade registered nurses, with low perceived guideline knowledge. A whole unit or team approach led by nurse champions is needed to develop and establish practice and educational strategies that would increase the availability, application, and knowledge of guidelines within everyday practice.


Subject(s)
Nurses , Cross-Sectional Studies , Humans , Ireland , Surveys and Questionnaires
5.
Molecules ; 26(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671085

ABSTRACT

Seaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlighted.


Subject(s)
Aquaculture/methods , Complex Mixtures/chemistry , Laminaria/chemistry , Macrocystis/chemistry , Seaweed/chemistry , Animals , Dietary Supplements , Europe , Food , Humans , Legislation as Topic , Pharmaceutical Preparations , Polysaccharides/chemistry , Proteins/chemistry , Social Control, Formal , United States
6.
Molecules ; 25(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138206

ABSTRACT

Crop production systems have adopted cost-effective, sustainable and environmentally friendly agricultural practices to improve crop yields and the quality of food derived from plants. Approaches such as genetic selection and the creation of varieties displaying favorable traits such as disease and drought resistance have been used in the past and continue to be used. However, the use of biostimulants to promote plant growth has increasingly gained attention, and the market size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products obtained from different inorganic or organic substances and microorganisms that can improve plant growth and productivity and abate the negative effects of abiotic stresses. They include materials such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial waste-derived compounds. Fish processing waste products have potential applications as plant biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein hydrolysates and legislation governing the use of plant biostimulants in agriculture.


Subject(s)
Fish Products , Plant Growth Regulators/analysis , Agriculture/legislation & jurisprudence , Agriculture/methods , Fish Proteins/chemistry , Seaweed/chemistry
7.
Molecules ; 25(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344706

ABSTRACT

Seaweeds are a rich source of protein and can contain up to 47% on the dry weight basis. It is challenging to extract proteins from the raw biomass of seaweed due to resilient cell-wall complexes. Four species of macroalgae were used in this study-two brown, Fucus vesiculosus and Alaria esculenta, and two red, Palmaria palmata and Chondrus crispus. Three treatments were applied individually to the macroalgal species: (I) high-pressure processing (HPP); (II) laboratory autoclave processing and (III) a classical sonication and salting out method. The protein, ash and lipid contents of the resulting extracts were estimated. Yields of protein recovered ranged from 3.2% for Fucus vesiculosus pre-treated with high pressure processing to 28.9% protein recovered for Chondrus crispus treated with the classical method. The yields of protein recovered using the classical, HPP and autoclave pre-treatments applied to Fucus vesiculosus were 35.1, 23.7% and 24.3%, respectively; yields from Alaria esculenta were 18.2%, 15.0% and 17.1% respectively; yields from Palmaria palmata were 12.5%, 14.9% and 21.5% respectively, and finally, yields from Chondrus crispus were 35.2%, 16.1% and 21.9%, respectively. These results demonstrate that while macroalgal proteins may be extracted using either physical or enzymatic methods, the specific extraction procedure should be tailored to individual species.


Subject(s)
Chemical Fractionation , Proteins/chemistry , Proteins/isolation & purification , Seaweed/chemistry , Amino Acids/chemistry , Chemical Fractionation/methods , Lipids/chemistry , Solubility
8.
Mar Drugs ; 17(4)2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30935056

ABSTRACT

A protein extract was generated from the macroalga Ulva lactuca, which was subsequently hydrolysed using the food-grade enzyme papain and angiotensin-converting Enzyme I and renin inhibitory peptides identified using a combination of enrichment strategies employing molecular weight cutoff filtration and mass spectrometry analysis. The generated hydrolysates with the most promising in vitro activity were further purified using preparative RP-HPLC and characterised. The 1 kDa hydrolysate (1 kDa-UFH), purified and collected by preparative RP-HPLC at minutes 41‒44 (Fr41‒44), displayed statistically higher ACE-I inhibitory activities ranging from 96.91% to 98.06%. A total of 48 novel peptides were identified from these four fractions by LC-MS/MS. A simulated gastrointestinal digestion of the identified peptide sequences was carried out using in silico enzyme cleavage simulation tools, resulting in 86 peptide sequences that were further assessed for their potential activity, toxicity and allergenicity using multiple predictive approaches. All the peptides obtained in this study were predicted to be non-toxic. However, 28 out of the 86 novel peptides released after the in silico gastrointestinal digestion were identified as potential allergens. The potential allergenicity of these peptides should be further explored to comply with the current labelling regulations in formulated food products containing U. lactuca protein hydrolysates.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Oligopeptides/metabolism , Oligopeptides/pharmacology , Protein Hydrolysates/pharmacology , Ulva/metabolism , Allergens/pharmacology , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/pharmacology , Computer Simulation , Humans , Hydrolysis , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Protein Hydrolysates/chemistry , Protein Hydrolysates/isolation & purification , Seaweed/chemistry , Ulva/chemistry , Ulva/cytology
9.
Food Microbiol ; 82: 30-35, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027787

ABSTRACT

Mushroom growth substrates from different commercial producers of mushrooms (Agaricus bisporus) were screened for the presence of bacteria with potential for use as biocontrol agents for controlling Listeria monocytogenes in the mushroom production environment. Eight anti-listerial strains were isolated from different sources and all were identified using 16s rRNA gene sequencing as Lactococcus lactis subsp. lactis. Whole-genome sequencing of the Lc. lactis isolates indicated that strains from different sites and substrate types were highly similar. Colony MALDI-TOF mass spectrometry found that these strains were Nisin Z producers but inhibitory activity was highly influenced by the incubation conditions and was strain dependant. The biofilm forming ability of these strains was tested using a crystal violet assay and all were found to be strong biofilm formers. Growth of Lc. lactis subsp. lactis using mixed-biofilm conditions with L. monocytogenes on stainless steel resulted in a 4-log reduction of L. monocytogenes cell numbers. Additional sampling of mushroom producers showed that these anti-listerial Lc. lactis strains are commonly present in the mushroom production environment. Lc. lactis has a generally regarded as safe (GRAS) status and therefore has potential for use as an environmentally benign solution to control L. monocytogenes in order to prevent product contamination and to enhance consumer confidence in the mushroom industry.


Subject(s)
Agaricales , Antibiosis , Bacteriocins/pharmacology , Biological Control Agents , Food Microbiology , Lactococcus lactis/physiology , Listeria monocytogenes/pathogenicity , Biofilms , Food Contamination/prevention & control , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stainless Steel
10.
Mar Drugs ; 15(6)2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28635654

ABSTRACT

Brown seaweeds contain many bioactive compounds, including polyphenols, polysaccharides, fucosterol, and fucoxantin. These compounds have several biological activities, including anti-inflammatory, hepatoprotective, anti-tumor, anti-hypertensive, and anti-diabetic activity, although in most cases their mechanisms of action are not understood. In this study, extracts generated from five brown algae (Fucus dichitus, Fucus vesiculosus (Linnaeus), Cytoseira tamariscofolia, Cytoseira nodacaulis, Alaria esculenta) were tested for their ability to activate SIRT6 resulting in H3K9 deacetylation. Three of the five macroalgal extracts caused a significant increase of H3K9 deacetylation, and the effect was most pronounced for F. dichitus. The compound responsible for this in vitro activity was identified by mass spectrometry as fucoidan.


Subject(s)
Fucus/chemistry , Phaeophyceae/chemistry , Sirtuins/metabolism , Humans , Mass Spectrometry/methods , Polysaccharides/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry
11.
Int J Mol Sci ; 17(4): 482, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27043546

ABSTRACT

A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3-10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function.


Subject(s)
Antioxidants/metabolism , Intestinal Mucosa/metabolism , Peptides/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Albumins/chemistry , Albumins/metabolism , Amino Acid Sequence , Animals , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/metabolism , Chickens , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Humans , Mucins/antagonists & inhibitors , Mucins/metabolism , Muramidase/antagonists & inhibitors , Muramidase/metabolism , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Picrates/chemistry , Picrates/metabolism , Renin/antagonists & inhibitors , Renin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Swine
12.
Planta Med ; 81(8): 679-84, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26018918

ABSTRACT

Accelerated solvent extraction (ASE®) was used to generate 18 macroalgal extracts from Irish seaweeds. The glycine betaine and dimethylsulfoniopriopionate content of the generated ASE® extracts were estimated using (1)H-NMR and confirmed for selected extracts using ultra performance liquid chromatography and mass spectrometry. Dimethylsulfoniopriopionate was only identified in the ASE® extract generated from Codium fragile ISCG0029. Glycine betaine was identified in the ASE® extract generated from Ulva intestinalis ISCG0356 using (1)H-NMR. Mass spectrometry analysis found that the seaweed species Cytoseira nodicaulis ISCG0070, Cytoseira tamariscofolia ISCG0283, and Polysiphonia lanosa ISCG0462 also had a glycine betaine content that ranged from 1.39 ng/ml to 105.11 ng/ml. Generated ASE® macroalgal extracts have potential for use as functional food ingredients in food products.


Subject(s)
Betaine/isolation & purification , Cardiotonic Agents/isolation & purification , Functional Food , Seaweed/chemistry , Sulfonium Compounds/isolation & purification , Betaine/chemistry , Cardiotonic Agents/chemistry , Chromatography, Liquid , Mass Spectrometry , Solvents , Sulfonium Compounds/chemistry
13.
Int J Mol Sci ; 16(9): 22485-508, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26393573

ABSTRACT

Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.


Subject(s)
Carbohydrates/pharmacology , Food Analysis , Peptides/pharmacology , Animals , Carbohydrates/chemistry , Carbohydrates/therapeutic use , Drug Therapy , Humans , Peptides/chemistry , Peptides/therapeutic use , Plants/metabolism
14.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38206107

ABSTRACT

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Subject(s)
Diet , Methane , Sheep , Animals , Female , Methane/metabolism , Diet/veterinary , Dietary Supplements/analysis , Ruminants , Silage/analysis , Fatty Acids, Volatile/metabolism , Rumen/metabolism , Soybean Oil/metabolism , Plant Extracts , Fermentation , Animal Feed/analysis , Lactation , Digestion
15.
Glob Chall ; 7(5): 2200098, 2023 May.
Article in English | MEDLINE | ID: mdl-37205930

ABSTRACT

Globally, capture fisheries contribute significantly to protein supply and the food security of a third of the world's population. Although capture fisheries production has not significantly increased in tonnes landed per annum during the last two decades (since 1990), it still produced a greater tonnage of protein than aquaculture in 2018. Policy in the European Union and other locations favors production of fish through aquaculture to preserve existing fish stocks and prevent extinction of species from overfishing. However, aquaculture production of fish in order to feed the growing global population would need to increase from 82 087 kT in 2018 to 129 000 kT by 2050. The Food and Agriculture Organization states that global production of aquatic animals was 178 million tonnes in 2020. Capture fisheries contributed 90 million tonnes (51%) of this. For capture fisheries to be a sustainable practice in alignment with UN sustainability goals, ocean conservation measures must be followed and processing of capture fisheries may need to adapt food-processing strategies already used extensively in the processing of dairy, meat, and soy. These are required to add value to reduced fish landings and sustain profitability.

16.
Glob Chall ; 7(5): 2200145, 2023 May.
Article in English | MEDLINE | ID: mdl-37205931

ABSTRACT

The potential of seaweed to mitigate methane is real and studies with red seaweeds have found reductions in methane produced from ruminants fed red seaweeds in the region of 60-90% where the active compound responsible for this is bromoform. Other studies with brown and green seaweeds have observed reductions in methane production of between 20 and 45% in vitro and 10% in vivo. Benefits of feeding seaweeds to ruminants are seaweed specific and animal species-dependent. In some instances, positive effects on milk production and performance are observed where selected seaweeds are fed to ruminants while other studies note reductions in performance traits. A balance between reducing methane and maintaining animal health and food quality is necessary. Seaweeds are a source of essential amino acids and minerals however, and offer huge potential for use as feeds for animal health maintenance once formulations and doses are correctly prepared and administered. A negative aspect of seaweed use for animal feed currently is the cost associated with wild harvest and indeed aquaculture production and improvements must be made here if seaweed ingredients are to be used as a solution to control methane production from ruminants for continued production of animal/ruminant sourced proteins in the future. This review collates information concerning different seaweeds and how they and their constituents can reduce methane from ruminants and ensure sustainable production of ruminant proteins in an environmentally beneficial manner.

17.
Animals (Basel) ; 13(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37760326

ABSTRACT

Researchers have been exploring seaweeds to reduce methane (CH4) emissions from livestock. This study aimed to investigate the potential of a red macroalga, B. hamifera, as an alternative to mitigate CH4 emissions. B. hamifera, harvested from the west coast of Sweden, was used in an in vitro experiment using a fully automated gas production system. The experiment was a randomized complete block design consisting of a 48 h incubation that included a control (grass silage) and B. hamifera inclusions at 2.5%, 5.0%, and 7.5% of grass silage OM mixed with buffered rumen fluid. Predicted in vivo CH4 production and total gas production were estimated by applying a set of models to the gas production data and in vitro fermentation characteristics were evaluated. The results demonstrated that the inclusion of B. hamifera reduced (p = 0.01) predicted in vivo CH4 and total gas productions, and total gas production linearly decreased (p = 0.03) with inclusion of B. hamifera. The molar proportion of propionate increased (p = 0.03) while isovalerate decreased (p = 0.04) with inclusion of B. hamifera. Chemical analyses revealed that B. hamifera had moderate concentrations of polyphenols. The iodine content was low, and there was no detectable bromoform, suggesting quality advantages over Asparagopsis taxiformis. Additionally, B. hamifera exhibited antioxidant activity similar to Resveratrol. The findings of this study indicated that B. hamifera harvested from temperate waters of Sweden possesses capacity to mitigate CH4 in vitro.

18.
Foods ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893770

ABSTRACT

Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.

19.
Foods ; 11(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35159443

ABSTRACT

Seaweed biomass is considered a valuable and potential, alternative protein source but it is currently under-exploited. Seaweed or Macroalgae do not require arable land and freshwater for their cultivation, they are fast growing and contain several health ingredients and beneficial macronutrients. In this study, we determined the in vitro k-Protein Digestibility-Corrected Amino Acid Score (k-PDCAAS) values of six different, Irish seaweeds using the rapid k-PDCAAS method. Based on the amino acid profile and protein content of each seaweed, the in vitro protein digestibility and k-PDCAAS scores were calculated. In addition, the limiting amino acid(s) for each of the six seaweeds was/were determined. Results suggest that although the in vitro digestibility was quite similar for all analyzed seaweeds, their k-PDCAAS scores varied significantly. The red seaweed Palmaria palmata had a k-PDCAAS score of 0.69 ± 0.014, while Fucus serratus had a value of 0.63 ± 0.084 and Alaria esculenta a value of 0.59 ± 0.021. The seaweeds were found to be rich in essential amino acids and taurine. Overall, the amino acid composition of the seaweeds studied suggests that they are suitable alternative protein sources for use in human nutrition providing both essential and non-essential amino acids to the consumer.

20.
Nutrients ; 14(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35631304

ABSTRACT

Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.


Subject(s)
Gastrointestinal Microbiome , Seaweed , Australia , Bacteria , Clostridiales/genetics , Dietary Carbohydrates/metabolism , Fatty Acids, Volatile/metabolism , Humans , Inulin/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Prebiotics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL