Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 19(2): e2205024, 2023 01.
Article in English | MEDLINE | ID: mdl-36398604

ABSTRACT

Mono-chemotherapy has significant side effects and unsatisfactory efficacy, limiting its clinical application. Therefore, a combination of multiple treatments is becoming more common in oncotherapy. Chemotherapy combined with the induction of ferroptosis is a potential new oncotherapy. Furthermore, polymeric nanoparticles (NPs) can improve the antitumor efficacy and decrease the toxicity of drugs. Herein, a polymeric NP, mPEG-b-PPLGFc@Dox, is synthesized to decrease the toxicity of doxorubicin (Dox) and enhance the efficacy of chemotherapy by combining it with the induction of ferroptosis. First, mPEG-b-PPLGFc@Dox is oxidized by endogenous H2 O2 and releases Dox, which leads to an increase of H2 O2 by breaking the redox balance. The Fe(II) group of ferrocene converts H2 O2 into ·OH, inducing subsequent ferroptosis. Furthermore, glutathione peroxidase 4, a biomarker of ferroptosis, is suppressed and the lipid peroxidation level is elevated in cells incubated with mPEG-b-PPLGFc@Dox compared to those treated with Dox alone, indicating ferroptosis induction by mPEG-b-PPLGFc@Dox. In vivo, the antitumor efficacy of mPEG-b-PPLGFc@Dox is higher than that of free Dox. Moreover, the loss of body weight in mice treated mPEG-b-PPLGFc@Dox is lower than in those treated with free Dox, indicating that mPEG-b-PPLGFc@Dox is less toxic than free Dox. In conclusion, mPEG-b-PPLGFc@Dox not only has higher antitumor efficacy but it reduces the damage to normal tissue.


Subject(s)
Ferroptosis , Nanoparticles , Mice , Animals , Metallocenes , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Polyethylene Glycols , Polymers
2.
J Gastroenterol Hepatol ; 36(1): 233-239, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32453900

ABSTRACT

BACKGROUND AND AIM: Single-nucleotide polymorphisms (SNPs) in long non-coding RNAs (lncRNAs) are potential biomarkers for cancer risk, but their association with hepatocellular carcinoma (HCC) is unclear. We examined the association of lncRNA-related SNPs with HCC susceptibility and explored the optimal genetic models for SNPs. METHODS: Five candidate SNPs linked with digestive tumors were first genotyped in a screening population of 700 HCC and 2800 control cases. The association between each SNP and HCC risk was estimated by multivariate logistic regression adjusted by sex and age and recorded as odds ratio (OR) with 95% confidence interval. Significant associations were further tested in a validation population with 1140 HCC and 5115 control cases. Finally, the most appropriate genetic models for HCC-associated SNPs were identified using pairwise allele differences; the overall gene effects of each SNP were further evaluated based on optimal genetic models. RESULTS: Three candidate SNPs, rs7315438, rs6983267, and rs10795668, showed statistical connections with HCC risk in the discovery stage. Among these, rs7315438 remained steadily significant in the validation stage; rs7315438 and rs10795668 both reached statistical threshold in the combined analysis of both stages. SNP rs7315438 (TC vs TT/CC, OR = 1.410, P < 0.001) was associated with increased risk of HCC in a complete overdominant model, whereas rs10795668 (AG vs AA/GG, OR = 0.892, P = 0.035) exerted a protective effect on HCC risk in a complete overdominant model. CONCLUSIONS: Long non-coding RNA-related SNPs rs7315438 and rs10795668 are potential biomarkers for HCC susceptibility, especially when evaluated based on their optimal genetic models.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Liver Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Long Noncoding/genetics , Case-Control Studies , Female , Humans , Male , Models, Genetic , Risk
3.
Genomics ; 112(6): 4959-4967, 2020 11.
Article in English | MEDLINE | ID: mdl-32919020

ABSTRACT

There is a compelling need to identify novel genetic variants for papillary thyroid cancer (PTC) susceptibility. The Cancer Genome Atlas (TCGA) data showed associations between SPP1 and SPARC mRNA overexpression and aggressive behaviors of PTC, which prompted us to assess potential associations between genetic variants in these genes and PTC risk. Three highly linked SPARC loci (rs1054204, rs3210714, and rs3549) contributed to reduced PTC risk under a codominant model (odds ratio [OR], 0.79-0.80). Variant CAG alleles at these loci significantly enhanced SPARC transcription activation upon cotransfection with miR-29b and miR-495 when compared to the common alleles GGC (all P < 0.05). The three SPARC polymorphisms interacted with SPP1 rs4754, with elevated joint ORs of 2.43, 2.52, and 2.52, respectively. Additionally, interaction between SPP1 rs2358744 and SPARC rs2304052 was observed. Our study revealed associations between SPP1 and SPARC polymorphisms that, individually or in combination, are involved in PTC susceptibility.


Subject(s)
Osteonectin/genetics , Osteopontin/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , 3' Untranslated Regions , Female , Genetic Predisposition to Disease , Humans , Male , MicroRNAs/metabolism , Middle Aged , Models, Genetic , Osteonectin/metabolism , Osteopontin/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
4.
J Pak Med Assoc ; 71(2(A)): 473-478, 2021 02.
Article in English | MEDLINE | ID: mdl-33819231

ABSTRACT

OBJECTIVE: To compare the expression levels of Defective In Cullin Neddylation 1 Domain Containing 1 oncogene in prostate cancer tissues and normal prostate tissues, to explore its effect on cancerous cells, and to investigate its underlying mechanisms on such cells in vitro. METHODS: The cross-sectional study was conducted at Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics from Jan 03,2017 to Nov 05,2018, and comprised prostate tissue samples on which immunohistochemistry was used to detect the expression of Defective In Cullin Neddylation 1 Domain Containing 1 oncogene. Short hairpin ribonucleic acid expression plasmid targeting the oncogene was constructed and transferred into prostate cance cell line DU145. The roles of the oncogene in prostate cancer progression were confirmed in vitro. The expression of vimentin and epithelial cadherin influenced by the oncogene were detected using Western blot. Data was analysed using SPSS 24. RESULTS: Of the 80 samples, 3(3.75%) were normal prostate tissues, 7(8.75%) adjacent normal prostate tissues, 20(25%) hyperplasia, and 50(62.5%) prostate cancer tissues. Defective In Cullin Neddylation 1 Domain Containing 1 oncogene expression in prostate cancerous tissues was significantly associated with high Gleason score (p<0.001), metastasis (p<0.05) and pathological stage (p<0.001). The oncogene was found to be an independent prognostic factor for disease-free survival of prostate cancer patients (p=0.0108). In vitro analysis confirmed the tumour promotive role of the oncogene through cell proliferation, invasion and migration assays. Its expression was closely correlated with aggressive progression and poor prognosis in prostate cancer patients (p<0.05). Vimentin and epithelial cadherin were affected by the oncogene. CONCLUSIONS: Defective In Cullin Neddylation 1 Domain Containing 1 oncogene highly expressed in DU145 and the prostate cancer tissues, which correlated with prognosis.


Subject(s)
Prostatic Neoplasms , Cell Line , Cell Proliferation , Cross-Sectional Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Prognosis , Prostatic Neoplasms/genetics
5.
Mol Carcinog ; 59(8): 897-907, 2020 08.
Article in English | MEDLINE | ID: mdl-32319143

ABSTRACT

Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Biomarkers, Tumor/metabolism , Chemokines, CC/metabolism , Gene Expression Regulation, Neoplastic , L-Lactate Dehydrogenase/metabolism , Prostatic Neoplasms/pathology , Receptors, CCR8/metabolism , Apoptosis , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Biomarkers, Tumor/genetics , Cell Proliferation , Chemokines, CC/genetics , Humans , Isoenzymes , L-Lactate Dehydrogenase/genetics , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, CCR8/genetics , Survival Rate , Tumor Cells, Cultured
7.
J Cell Biochem ; 119(9): 7245-7255, 2018 09.
Article in English | MEDLINE | ID: mdl-29797600

ABSTRACT

AT-rich interaction domain 4A (ARID4A) and AT-rich interaction domain 4B (ARID4B), which are both the AT-rich interaction domain (ARID) family, have been reported to be oncogene or tumor suppressor gene in various human malignances, but there is no involvement about their functions in prostate cancer (PCa). Our previous study has reported that microRNA-30d (miR-30d) expression can predicted poor clinical prognosis in PCa, however, the underlying mechanisms of miR-30d have not been fully described. The aim of our study is to investigate the expression relevance between miR-30d and ARID4A or ARID4B, and examine the clinical significance and biological function of ARID4A and AIRD4B in PCa. In this study, both ARID4A and ARID4B were identified as the target genes of miR-30d. In addition, the mRNA expression of miR-30d in PCa tissues were significantly negative correlated with ARID4A (Pearson correlation coefficient = -0.313, P = 0.001) and ARID4B (Pearson correlation coefficient = -0.349, P < 0.001), while there was a positive correlation between ARID4A and ARID4B (Pearson correlation coefficient = 0.865, P < 0.001). Moreover, both ARID4A and ARID4B were significantly downregulated in PCa tissues with high Gleason scores (P = 0.005, P = 0.033), PSA failure (P = 0.012, P = 0.05) and short biochemical recurrent-free survival (P = 0.033, P = 0.031). Furthermore, the knockout expression of ARID4A and ARID4B promoted PCa cell proliferation, migration and invasion in vitro. In conclusion, our results indicated that ARID4A and ARID4B may serve as tumor suppressor in PCa progression, suggesting that they might be the potential therapeutic targets in prostate cancer.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Retinoblastoma-Binding Protein 1/genetics , Retinoblastoma-Binding Protein 1/metabolism , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cohort Studies , Disease Progression , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Genes, Tumor Suppressor , Humans , Kaplan-Meier Estimate , Male , Neoplasm Invasiveness , Statistics, Nonparametric
9.
BMC Urol ; 18(1): 82, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30249226

ABSTRACT

BACKGROUND: Immediate early response gene 3 (IER3) is a stress-inducible gene, which exerts diverse effects in regulating cell apoptosis and cell cycle. Growing evidence shows that IER3 functions either as an oncogene or a tumor suppressor in various human cancers with a cancer type-dependent manner. However, the involvement of IER3 in human bladder cancer (BCa) has not been elucidated. In the current study, we aimed to investigate the expression pattern and the clinical significance of IER3 in BCa. METHODS: We performed immunohistochemistry analysis to examine the subcellular localization and the expression levels of IER3 protein in 88 BCa specimens obtained from Department of Pathology in Massachusetts General Hospital. The associations of IER3 protein expression with various clinicopathological features and patients' overall survival were statistically evaluated. RESULTS: IER3 protein was mainly expressed in the cytoplasm in bladder cancer cell. Of 88 BCa tissue specimens, 39 (44.3%) showed high expression of IER3 protein and 49 (55.7%) showed low expression. High IER3 protein expression was significantly associated with high pathologic nodal stage (p = 0.018). Kaplan-Meier analysis revealed that the overall survival of BCa patients with overexpression of IER3 protein was shorter than that with low expression (p < 0.01). Multivariate analysis by Cox regression further identified IER3 as an independent prognostic factor of BCa patients (p = 0.010). CONCLUSIONS: Our findings suggest for the first time that the increased expression of IER3 protein may promote the aggressive progression of BCa. Importantly, IER3 may be a potential prognostic marker for BCa patients.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Urinary Bladder Neoplasms/metabolism , Aged , Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/metabolism , Disease Progression , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Membrane Proteins/genetics , Middle Aged , Multivariate Analysis , Prognosis , Proportional Hazards Models , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology
10.
Mol Cancer ; 16(1): 48, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28241827

ABSTRACT

BACKGROUND: Even though aberrant expression of microRNA (miR)-30d has been reported in prostate cancer (PCa), its associations with cancer progression remain contradictory. The aim of this study was to investigate clinical significance, biological functions and underlying mechanisms of miR-30d deregulation in PCa. METHODS: Involvement of miR-30d deregulation in malignant phenotypes of PCa was demonstrated by clinical sample evaluation, and in vitro and in vivo experiments. The mechanisms underlying its regulatory effect on tumor angiogenesis were determined. RESULTS: miR-30d over-expression was observed in both PCa cells and clinical specimens. High-miR-30d was distinctly associated with high pre-operative PSA and Gleason score, advanced clinical and pathological stages, positive metastasis and biochemical recurrence (BCR), and reduced overall survival of PCa patients. Through gain- and loss-of-function experiments, we found that miR-30d promoted PCa cell proliferation, migration, invasion, and capillary tube formation of endothelial cells, as well as in vivo tumor growth and angiogenesis in a mouse model. Simulation of myosin phosphatase targeting subunit 1 (MYPT1), acting as a direct target of miR-30d, antagonized the effects induced by miR-30d up-regulation in PCa cells. Notably, miR-30d/MYPT1 combination was identified as an independent factor to predict BCR of PCa patients. Furthermore, miR-30d exerted its pro-angiogenesis function, at least in part, by inhibiting MYPT1, which in turn, increased phosphorylation levels of c-JUN and activated VEGFA-induced signaling cascade in endothelial cells. CONCLUSIONS: miR-30d and/or its target gene MYPT1 may serve as novel prognostic markers of PCa. miR-30d promotes tumor angiogenesis of PCa through MYPT1/c-JUN/VEGFA pathway.


Subject(s)
MicroRNAs/genetics , Myosin-Light-Chain Phosphatase/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Expression Regulation , Heterografts , Humans , Male , Mice , Myosin-Light-Chain Phosphatase/genetics , Prognosis , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , RNA Interference
11.
Biochem Biophys Res Commun ; 487(3): 517-524, 2017 06 03.
Article in English | MEDLINE | ID: mdl-28412354

ABSTRACT

Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17ß-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca2+ release from the endoplasmic reticulum, increased the mitochondrial Ca2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP3) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis.


Subject(s)
Apoptosis/drug effects , Estrogens/pharmacology , Prostate/drug effects , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Benzodioxoles/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Humans , Male , Mice , Prostate/cytology , Prostatic Hyperplasia/metabolism , Quinolines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Structure-Activity Relationship
12.
Tumour Biol ; 39(6): 1010428317703924, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28651494

ABSTRACT

As a member of helix-loop-helix protein family, transcription factor 12 functions as either an oncogene or a tumor suppressor in various human cancers. However, there are no reports on its involvement in prostate cancer. To investigate clinical relevance of transcription factor 12 in prostate cancer and to evaluate its roles in malignant phenotypes of this cancer in vitro and in vivo, we here examined expression patterns of transcription factor 12 protein in 50 prostate cancer tissue specimens by immunohistochemistry. Then, associations of transcription factor 12 expression with various clinicopathological characteristics and patients' prognosis of prostate cancer were evaluated. Its involvements in cancer cell proliferation, migration, invasion, and tumor growth were determined by in vitro and in vivo experiments. As a result, the positive immunostaining of transcription factor 12 protein was localized in cytoplasm and/or nucleus of prostate cancer cells. Its expression levels were decreased with prostate cancer Gleason score increased. Statistically, the decreased expression of transcription factor 12 protein more frequently occurred in prostate cancer patients with high Gleason score, positive metastasis, prostate-specific antigen failure, and short biochemical recurrence-free survival (all p < 0.05). Importantly, multivariate analysis showed that the status of transcription factor 12 expression was an independent predictor of biochemical recurrence-free survival in prostate cancer. Functionally, enforced expression of transcription factor 12 suppressed cell proliferation, migration, and invasion in vitro and inhibited tumor growth in vivo. In conclusion, transcription factor 12 protein may be a novel molecule which plays a critical role in prostate cancer progression and patients' prognosis, suggesting it might be a promising therapeutic target for prostate cancer therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local/genetics , Prostatic Neoplasms/genetics , Aged , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Biomarkers, Tumor/biosynthesis , Cell Proliferation/genetics , Disease Progression , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology
13.
Int Braz J Urol ; 42(1): 101-6, 2016.
Article in English | MEDLINE | ID: mdl-27136474

ABSTRACT

OBJECTIVE: To evaluate the clinical efficiency of alpha1-adrenergic antagonists on stentless ureteroscopic lithotripsy treating uncomplicated lower ureteral stones. MATERIALS AND METHODS: From January 2007 to January 2013, 84 patients who have uncomplicated lower ureteral stones treated by ureteroscopic intracorporeal lithotripsy with the holmium laser were analyzed. The patients were divided into two groups, group A (44 patients received indwelled double-J stents) and group B (40 patients were treated by alpha1-adrenergic antagonists without stents). All cases of group B were treated with alpha1 blocker for 1 week. RESULTS: The mean operative time of group A was significantly longer than group B. The incidences of hematuria, flank/abdominal pain, frequency/urgency after surgery were statistically different between both groups. The stone-free rate of each group was 100%. CONCLUSIONS: The effect of alpha1-adrenergic antagonists is more significant than indwelling stent after ureteroscopic lithotripsy in treating uncomplicated lower ureteral stones.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/therapeutic use , Lithotripsy/methods , Sulfonamides/therapeutic use , Ureteral Calculi/surgery , Ureteroscopy/methods , Adult , Female , Humans , Lasers, Solid-State/therapeutic use , Length of Stay , Male , Middle Aged , Operative Time , Pain Measurement , Postoperative Complications , Postoperative Period , Prospective Studies , Reproducibility of Results , Statistics, Nonparametric , Tamsulosin , Treatment Outcome , Young Adult
14.
Mol Carcinog ; 54(10): 1194-204, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25043940

ABSTRACT

MAP1S (originally named C19ORF5) is a widely distributed homolog of neuronal-specific MAP1A and MAP1B, and bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. Mitochondrion-associated protein LRPPRC functions as an inhibitor for autophagy initiation to protect mitochondria from autophagy degradation. MAP1S and LRPPRC interact with each other and may collaboratively regulate autophagy although the underlying mechanism is yet unknown. Previously, we have reported that LRPPRC levels serve as a prognosis marker of patients with prostate adenocarcinomas (PCA), and that patients with high LRPPRC levels survive a shorter period after surgery than those with low levels of LRPPRC. MAP1S levels are elevated in diethylnitrosamine-induced hepatocelular carcinomas in wildtype mice and the exposed MAP1S-deficient mice develop more malignant hepatocellular carcinomas. We performed immunochemical analysis to evaluate the co-relationship among the levels of MAP1S, LRPPRC, P62, and γ-H2AX. Samples were collected from wildtype and prostate-specific PTEN-deficient mice, 111 patients with PCA who had been followed up for 10 years and 38 patients with benign prostate hyperplasia enrolled in hospitals in Guangzhou, China. The levels of MAP1S were generally elevated so the MAP1S-mediated autophagy was activated in PCA developed in either PTEN-deficient mice or patients than their respective benign tumors. The MAP1S levels among patients with PCA vary dramatically, and patients with low MAP1S levels survive a shorter period than those with high MAP1S levels. Levels of MAP1S in collaboration with levels of LRPPRC can serve as markers for prognosis of prostate cancer patients.


Subject(s)
Autophagy/physiology , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Animals , Histones/metabolism , Humans , Male , Mice , PTEN Phosphohydrolase/metabolism , Prognosis , RNA-Binding Proteins/metabolism
15.
Tumour Biol ; 36(3): 1983-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25394900

ABSTRACT

We previously demonstrated that microRNA (miR)-224 expression was significantly reduced in human prostate cancer (PCa) tissues and predicted unfavorable prognosis in patients. However, the underlying mechanisms of miR-224 have not been fully elucidated. In this study, calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was identified as a target gene of miR-224. Then, we found that enforced expression of miR-224 could suppress PCa cell proliferation and cell cycle by regulating the expression of CAMKK2 in vitro. In addition, the expression levels of miR-224 in PCa tissues were negatively correlated with those of CAMKK2 mRNA significantly (Spearman's correlation: r = -0.66, P = 0.004). Moreover, combined low miR-224 expression and high CAMKK2 expression (miR-224-low/CAMKK2-high) was closely correlated with advanced clinical stage (P = 0.028). Furthermore, PCa patients with miR-224-low/CAMKK2-high expression more frequently had shorter overall survival than those in groups with other expression patterns of two molecules. In conclusion, our data offer the convincing evidence that miR-224 and its target gene CAMKK2 may synergistically contribute to the malignant progression of PCa. Combined detection of miR-224 and CAMKK2 expressions represents an efficient predictor of patient prognosis and may be a novel marker which can provide additional prognostic information in PCa.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , RNA, Messenger/genetics
16.
Zhonghua Nan Ke Xue ; 21(5): 408-13, 2015 May.
Article in Zh | MEDLINE | ID: mdl-26117937

ABSTRACT

OBJECTIVE: To screen and verify differentially expressed genes in prostate cancer. METHODS: Using DNA microarray, we screened differentially expressed genes in prostate cancer tissue and its adjacent tissue followed by verification by PCR. RESULTS: A total of 1 444 genes were found to be differentially expressed (differentiation ≥ 1.5-fold; P≤ 0.05) in the prostate cancer tissue, of which 769 (53%) were up-regulated and 675 (47%) down-regulated. Fifty percent of the differentially expressed genes showed a 1.5- to 2-fold differentiation, including 396 up-regulated and 182 down-regulated ones. Additionally, 308 up-regulated and 334 down-regulated genes exhibited a >2- to 5-fold, 46 up-regulated and 78 down-regulated genes a > 5- to 10-fold, and 19 up-regulated and 81 down-regulated genes a > 10-fold differentiation. Verification by subjecting 15 most significantly up-regulated and another 15 most markedly down-regulated genes to quantitative real-time PCR (qRT-PCR) showed that most of the genes had a transcriptional profile similar to that in the microarray data, with a Pearson correction coefficient of 0.83 between the microarray data and qRT-PCR results. Totally, 10 significantly differentially expressed genes were identified. CONCLUSION: DNA microarray analysis provides reliable information on differentially expressed genes in prostate cancer and benign tissues. The 10 significantly differentially expressed genes verified by qRT-PCR could possibly become new bio-markers and specific molecules for tumor identification.


Subject(s)
Gene Expression , Prostatic Neoplasms/genetics , Cell Differentiation , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Male , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Transcriptional Activation , Up-Regulation
17.
Int J Cancer ; 135(3): 541-50, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24382668

ABSTRACT

Our previous microarray data showed that microRNA-224 (miR-224) was downregulated in human prostate cancer (PCa) tissues compared with adjacent benign tissues. However, the underlying mechanisms by which miR-224 is involved in PCa remain unclear. In this study, we identified TRIB1 as a target gene of miR-224. Forced expression of miR-224 suppressed PCa cell proliferation, invasion and migration, and promoted cell apoptosis by downregulating TRIB1. Moreover, the expression level of miR-224 in PCa tissues was negatively correlated with that of TRIB1. miR-224 downregulation was frequently found in PCa tissues with metastasis, higher PSA level and clinical stage, whereas TRIB1 upregulation was significantly associated with metastasis. Both miR-224 downregulation and TRIB1 upregulation were significantly associated with poor biochemical recurrence-free survival of patients with PCa. In conclusion, these findings reveal that the aberrant expression of miR-224 and TRIB1 may promote PCa progression and have potentials to serve as novel biomarkers for PCa prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , Prostate/metabolism , Prostatic Neoplasms/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Apoptosis , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Movement , Cell Proliferation , Disease Progression , Flow Cytometry , Humans , Immunoenzyme Techniques , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Prostate/pathology , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Tissue Array Analysis , Tumor Cells, Cultured
18.
Cancer ; 120(8): 1228-36, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24390809

ABSTRACT

BACKGROUND: Autophagy has recently been found to play important roles in tumorigenesis and leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) has been identified as an inhibitor that suppresses autophagy and mitophagy and maintains mitochondrial activity. The authors hypothesized that LRPPRC levels can be used as a biomarker for the diagnosis and prognosis of prostate cancer. METHODS: Immunochemistry analysis was performed to evaluate the levels of LRPPRC in 112 samples collected from patients with prostate adenocarcinoma (PCa) and 38 samples from patients with benign prostatic hyperplasia (BPH) who were enrolled in hospitals in Guangzhou City, China and were followed for 10 years. RESULTS: Significantly higher levels of LRPPRC were found in PCa samples compared with BPH samples. Greater than 75% of patients with PCa demonstrated high levels of LRPPRC whereas only 10% of patients with BPH were found to have similar levels of LRPPRC. The levels of LRPPRC were found to be positively correlated with tumor grade, metastasis, and serum prostate-specific antigen level, but were negatively correlated with hormone therapy sensitivity after 2 years of surgery and overall survival. The association between high levels of LRPPRC and late-stage PCa or hormone therapy insensitivity was confirmed in tissue samples collected from prostate-specific phosphatase and tensin homolog (PTEN)(-/-) mice or hormone-dependent and hormone-independent PCa cell lines. CONCLUSIONS: LRPPRC levels may be used as an independent biomarker for patients with PCa at a late stage with poor prognosis.


Subject(s)
Autophagy/physiology , Neoplasm Proteins/analysis , Prostatic Neoplasms/mortality , Aged , Aged, 80 and over , Animals , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Neoplasms, Hormone-Dependent/chemistry , PTEN Phosphohydrolase/physiology , Prognosis , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/pathology
19.
Mol Biol Rep ; 41(5): 2779-88, 2014 May.
Article in English | MEDLINE | ID: mdl-24452717

ABSTRACT

MicroRNA-30c (miR-30c) acts as a tumor suppressor or a tumor promoter in various human malignancies. However, the involvement of miR-30c in prostate cancer (PCa) is still unclear. The aim of this study was to investigate the molecular function and the clinical significance of miR-30c in PCa. Expression levels of miR-30c in PCa tissues and cells were detected by quantitative real-time-PCR (qRT-PCR). Additionally, the associations of miR-30c expression with clinicopathological features and prognosis in PCa patients were analyzed. The potential role of miR-30c in tumorigenesis of PCa cells was further evaluated by in vitro cell assays. MiR-30c was significantly down-regulated in PCa tissues and cells compared with the corresponding controls (P<0.05). In addition, the downregulation of miR-30c in PCa tissues was significantly associated with higher Gleason score (P=0.009), advanced pathological stage (P=0.016) and biochemical recurrence (P=0.034). Moreover, Kaplan-Meier survival analysis showed that the reduced expression of miR-30c was correlated with shorter biochemical recurrence-free survival (P=0.023). The multivariate analysis also identified miR-30c as an independent prognostic predictor for biochemical recurrence-free survival in patients with PCa. Furthermore, the enforced expression of miR-30c suppressed proliferation, migration and invasion of PCa cells in vitro. Our data indicated the involvement of miR-30c in PCa progression and suggested its potential role as an independent predictor of biochemical recurrence in PCa. On cellular level, miR-30c may function as a tumor suppressor for PCa cells by inhibiting tumor cell proliferation, migration and invasion.


Subject(s)
Genes, Tumor Suppressor , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Adult , Aged , Cell Movement/genetics , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , ROC Curve , Recurrence
20.
Sci Rep ; 14(1): 9705, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678158

ABSTRACT

The primary triggers that stimulate the body to generate platelet antibodies via immune mechanisms encompass events such as pregnancy, transplantation, and blood transfusion. Interestingly, our findings revealed that a subset of male patients with hepatocellular carcinoma (HCC), despite having no history of transplantation or blood transfusion, has shown positive results in platelet antibody screenings. This hints at the possibility that certain factors, potentially related to the tumor itself or its treatment, may affect antibody production. To delve the causes we initiated this study. We employed a case-control study approach to analyze potential influential factors leading to the positive results via univariate and multivariate regression analysis. We utilized Kendall's tau-b correlation to examine the relationship between the strength of platelet antibodies and peripheral blood cytopenia. Antitumor medication emerged as an independent risk factor for positive results in HCC patients, and the strength of platelet antibodies positively correlated with the severity of anemia and thrombocytopenia. Without history of blood transfusion, transplantation, pregnancy, those HCC patients underwent recent tumor medication therapy are experiencing peripheral erythrocytopenia or thrombocytopenia, for them platelet antibody screenings holds potential clinical value for prevention and treatment of complications like drug-immune-related anemia and/or bleeding.


Subject(s)
Blood Platelets , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/blood , Liver Neoplasms/immunology , Male , Female , Middle Aged , Blood Platelets/immunology , Case-Control Studies , Thrombocytopenia/blood , Thrombocytopenia/immunology , Thrombocytopenia/etiology , Aged , Adult , Autoantibodies/blood , Autoantibodies/immunology , Anemia/blood , Anemia/immunology , Risk Factors , Cytopenia
SELECTION OF CITATIONS
SEARCH DETAIL