Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
Add more filters

Publication year range
1.
Mol Ther ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38910328

ABSTRACT

TGF-ß signaling is a well-established pathogenic mediator of DKD. However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.

2.
Proc Natl Acad Sci U S A ; 119(14): e2117112119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344430

ABSTRACT

SignificanceSTAT3 (signal transducer and activator of transcription 3) is a master transcription factor that organizes cellular responses to cytokines and growth factors and is implicated in inflammatory disorders. STAT3 is a well-recognized therapeutic target for human cancer and inflammatory disorders, but how its function is regulated in a cell type-specific manner has been a major outstanding question. We discovered that Stat3 imposes self-directed regulation through controlling transcription of its own regulator homeodomain-interacting protein kinase 2 (Hipk2) in a T helper 17 (Th17) cell-specific manner. Our validation of the functional importance of the Stat3-Hipk2 axis in Th17 cell development in the pathogenesis of T cell-induced colitis in mice suggests an approach to therapeutically treat inflammatory bowel diseases that currently lack a safe and effective therapy.


Subject(s)
Colitis , STAT3 Transcription Factor , Animals , Cell Differentiation/genetics , Colitis/genetics , Colitis/metabolism , Lymphocyte Activation , Mice , Protein Serine-Threonine Kinases/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Th17 Cells
3.
J Cell Mol Med ; 28(11): e18364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837668

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.


Subject(s)
Diabetic Nephropathies , Kidney , Lipid Metabolism , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Kidney/metabolism , Kidney/pathology , Macrophages/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Oxysterols/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
4.
Kidney Int ; 106(1): 50-66, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697478

ABSTRACT

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.


Subject(s)
Diabetic Nephropathies , Disease Progression , Glomerulosclerosis, Focal Segmental , Kidney Tubules, Proximal , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Humans , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Mice , Disease Models, Animal , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Apoptosis , Endocytosis
5.
Kidney Int ; 105(3): 540-561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159678

ABSTRACT

Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.


Subject(s)
Non-alcoholic Fatty Liver Disease , Renal Insufficiency, Chronic , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Disease Models, Animal , Fibrosis , Renal Insufficiency, Chronic/pathology , Phospholipids/metabolism , Proteinuria/pathology , Liver/pathology
6.
Mol Ther ; 31(3): 774-787, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36523164

ABSTRACT

Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/metabolism , STAT3 Transcription Factor/metabolism , Zebrafish , Acute Kidney Injury/etiology , Viral Proteins/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074766

ABSTRACT

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Subject(s)
Acute Kidney Injury/metabolism , Amino Acids, Branched-Chain/metabolism , Kidney/injuries , Kidney/metabolism , Kruppel-Like Factor 6/metabolism , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Inflammation , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Transcription Factors/genetics , Mice , Transcription Factors/metabolism
8.
Kidney Int ; 103(3): 529-543, 2023 03.
Article in English | MEDLINE | ID: mdl-36565808

ABSTRACT

Chronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death. Several in vitro studies have unraveled the molecular pathways driving the cytopathic effects of Vpr in tubular epithelial cells. However, the in vivo effects of Vpr on tubular injury and CKD pathogenesis have not been thoroughly investigated. Here, we use a novel inducible tubular epithelial cell-specific Vpr transgenic mouse model to show that Vpr expression leads to progressive tubulointerstitial damage, interstitial inflammation and fibrosis, and tubular cyst development. Importantly, Vpr-expressing tubular epithelial cells displayed significant hypertrophy, aberrant cell division, and atrophy; all reminiscent of tubular injuries observed in human HIV-associated nephropathy (HIVAN). Single-cell RNA sequencing analysis revealed the Vpr-mediated transcriptomic responses in specific tubular subsets and highlighted the potential multifaceted role of p53 in the regulation of cell metabolism, proliferation, and death pathways in Vpr-expressing tubular epithelial cells. Thus, our study demonstrates that HIV Vpr expression in tubular cells is sufficient to induce HIVAN-like tubulointerstitial damage and fibrosis, independent of glomerulosclerosis and proteinuria. Additionally, as this new mouse model develops progressive CKD with diffuse fibrosis and kidney failure, it can serve as a useful tool to examine the mechanisms of kidney disease progression and fibrosis in vivo.


Subject(s)
AIDS-Associated Nephropathy , Gene Products, vpr , HIV Infections , HIV-1 , Renal Insufficiency, Chronic , Animals , Humans , Mice , AIDS-Associated Nephropathy/genetics , Disease Models, Animal , Gene Products, vpr/genetics , Gene Products, vpr/metabolism , Gene Products, vpr/pharmacology , HIV Infections/complications , HIV-1/genetics , HIV-1/metabolism , Human Immunodeficiency Virus Proteins , Mice, Transgenic , Renal Insufficiency, Chronic/complications
9.
Mol Ther ; 30(4): 1741-1753, 2022 04 06.
Article in English | MEDLINE | ID: mdl-34678510

ABSTRACT

Angiotensin receptor blockers (ARBs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been used as the standard therapy for patients with diabetic kidney disease (DKD). However, how these two drugs possess additive renoprotective effects remains unclear. Here, we conducted single-cell RNA sequencing to profile the kidney cell transcriptome of db/db mice treated with vehicle, ARBs, SGLT2i, or ARBs plus SGLT2i, using db/m mice as control. We identified 10 distinct clusters of kidney cells with predominant proximal tubular (PT) cells. We found that ARBs had more anti-inflammatory and anti-fibrotic effects, while SGLT2i affected more mitochondrial function in PT. We also identified a new PT subcluster, was increased in DKD, but reversed by the treatments. This new subcluster was also confirmed by immunostaining of mouse and human kidneys with DKD. Together, our study reveals kidney cell-specific gene signatures in response to ARBs and SGLT2i and identifies a new PT subcluster, which provides new insight into the pathogenesis of DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Humans , Kidney , Transcriptome
10.
J Cell Mol Med ; 26(14): 3816-3827, 2022 07.
Article in English | MEDLINE | ID: mdl-35678269

ABSTRACT

Radix puerariae, a traditional Chinese herbal medication, has been used to treat patients with diabetic kidney disease (DKD). Our previous studies demonstrated that puerarin, the active compound of radix puerariae, improves podocyte injury in type 1 DKD mice. However, the direct molecular target of puerarin and its underlying mechanisms in DKD remain unknown. In this study, we confirmed that puerarin also improved DKD in type 2 diabetic db/db mice. Through RNA-sequencing odf isolated glomeruli, we found that differentially expressed genes (DEGs) that were altered in the glomeruli of these diabetic mice but reversed by puerarin treatment were involved mostly in oxidative stress, inflammatory and fibrosis. Further analysis of these reversed DEGs revealed protein kinase A (PKA) was among the top pathways. By utilizing the drug affinity responsive target stability method combined with mass spectrometry analysis, we identified guanine nucleotide-binding protein Gi alpha-1 (Gnai1) as the direct binding partner of puerarin. Gnai1 is an inhibitor of cAMP production which is known to have protection against podocyte injury. In vitro, we showed that puerarin not only interacted with Gnai1 but also increased cAMP production in human podocytes and mouse diabetic kidney in vivo. Puerarin also enhanced CREB phosphorylation, a downstream transcription factor of cAMP/PKA. Overexpression of CREB reduced high glucose-induced podocyte apoptosis. Inhibition of PKA by Rp-cAMP also diminished the effects of puerarin on high glucose-induced podocyte apoptosis. We conclude that the renal protective effects of puerarin are likely through inhibiting Gnai1 to activate cAMP/PKA/CREB pathway in podocytes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Animals , Apoptosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/pharmacology , Glucose/metabolism , Guanidine/metabolism , Guanidine/pharmacology , Guanidine/therapeutic use , Humans , Isoflavones , Mice , Nucleotides/metabolism , Podocytes/metabolism
11.
Am J Physiol Renal Physiol ; 323(4): F435-F446, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35924445

ABSTRACT

Components of the renin-angiotensin system, including angiotensinogen (AGT), are critical contributors to chronic kidney disease (CKD) development and progression. However, the specific role of tissue-derived AGTs in CKD has not been fully understood. To define the contribution of liver versus kidney AGT in the CKD development, we performed 5/6 nephrectomy (Nx), an established CKD model, in wild-type (WT), proximal tubule (PT)- or liver-specific AGT knockout (KO) mice. Nx significantly elevated intrarenal AGT expression and elevated blood pressure (BP) in WT mice. The increase of intrarenal AGT protein was completely blocked in liver-specific AGT KO mice with BP reduction, suggesting a crucial role for liver AGT in BP regulation during CKD. Nx-induced glomerular and kidney injury and dysfunction, as well as fibrosis, were all attenuated to a greater extent in liver-specific AGT KO mice compared with PT-specific AGT KO and WT mice. However, the suppression of interstitial fibrosis in PT- and liver-specific AGT KO mouse kidneys was comparable. Our findings demonstrate that liver AGT acts as a critical contributor in driving glomerular and tubular injury, renal dysfunction, and fibrosis progression, whereas the role of PT AGT was limited to interstitial fibrosis progression in chronic renal insufficiency. Our results provide new insights for the development of tissue-targeted renin-angiotensin system intervention in the treatment of CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a major unmet medical need with no effective treatment. Current findings demonstrate that hepatic and proximal tubule angiotensinogen have distinct roles in tubular and glomerular injury, fibrogenesis, and renal dysfunction during CKD development. As renin-angiotensin system components, including angiotensinogen, are important targets for treating CKD in the clinic, the results from our study may be applied to developing better tissue-targeted treatment strategies for CKD and other fibroproliferative diseases.


Subject(s)
Renal Insufficiency, Chronic , Renal Insufficiency , Angiotensinogen/genetics , Angiotensinogen/metabolism , Animals , Fibrosis , Kidney/metabolism , Liver/metabolism , Mice , Renal Insufficiency/metabolism , Renal Insufficiency, Chronic/metabolism , Renin-Angiotensin System
12.
Kidney Int ; 102(6): 1212-1214, 2022 12.
Article in English | MEDLINE | ID: mdl-36411015

ABSTRACT

Macrophage accumulation in the kidney is associated with the progression of crescentic glomerulonephritis (GN) and is mostly derived from circulating monocytes. FROUNT, a C-C motif chemokine receptor 2 (CCR2)-interacted protein, which is strongly expressed in monocytes/macrophages, enhances macrophage infiltration through CCR2-mediated chemotaxis. In this issue of the journal, Toda et al. reported that disulfiram, an inhibitor of FROUNT, attenuates GN by inhibition of the FROUNT-CCR2 interaction and macrophage migration and activation, suggesting a potential therapeutic role for crescentic GN.


Subject(s)
Glomerulonephritis , Receptors, CCR2 , Humans , Receptors, CCR2/metabolism , Macrophages/metabolism , Monocytes/metabolism , Chemotaxis , Glomerulonephritis/drug therapy , Glomerulonephritis/metabolism
13.
Kidney Int ; 101(2): 299-314, 2022 02.
Article in English | MEDLINE | ID: mdl-34774561

ABSTRACT

Kidney fibrosis is considered the final convergent pathway for progressive chronic kidney diseases, but there is still a paucity of success in clinical application for effective therapy. We recently demonstrated that the expression of secreted leucine-rich α-2 glycoprotein-1 (LRG1) is associated with worsened kidney outcomes in patients with type 2 diabetes and that LRG1 enhances endothelial transforming growth factor-ß signaling to promote diabetic kidney disease progression. While the increased expression of LRG1 was most prominent in the glomerular endothelial cells in diabetic kidneys, its increase was also observed in the tubulointerstitial compartment. Here, we explored the potential role of LRG1 in kidney epithelial cells and TGF-ß-mediated tubulointerstitial fibrosis independent of diabetes. LRG1 expression was induced by tumor necrosis factor-α in cultured kidney epithelial cells and potentiated TGF-ß/Smad3 signal transduction. Global Lrg1 loss in mice led to marked attenuation of tubulointerstitial fibrosis in models of unilateral ureteral obstruction and aristolochic acid fibrosis associated with concomitant decreases in Smad3 phosphorylation in tubule epithelial cells. In mice with kidney epithelial cell-specific LRG1 overexpression, while no significant phenotypes were observed at baseline, marked exacerbation of tubulointerstitial fibrosis was observed in the obstructed kidneys. This was associated with enhanced Smad3 phosphorylation in both kidney epithelial cells and α-smooth muscle actin-positive interstitial cells. Co-culture of kidney epithelial cells with primary kidney fibroblasts confirmed the potentiation of TGF-ß-mediated Smad3 activation in kidney fibroblasts through epithelial-derived LRG1. Thus, our results indicate that enhanced LRG1 expression-induced epithelial injury is an amplifier of TGF-ß signaling in autocrine and paracrine manners promoting tubulointerstitial fibrosis. Hence, therapeutic targeting of LRG1 may be an effective means to curtail kidney fibrosis progression in chronic kidney disease.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Ureteral Obstruction , Animals , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/genetics , Endothelial Cells/pathology , Fibrosis , Glycoproteins/metabolism , Humans , Kidney/pathology , Leucine/metabolism , Mice , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Ureteral Obstruction/metabolism
14.
Kidney Int ; 102(6): 1291-1304, 2022 12.
Article in English | MEDLINE | ID: mdl-36108806

ABSTRACT

The pathogenesis of diabetic kidney disease (DKD) involves multifactorial processes that converge to initiate and advance the disease. Although DKD is not typically classified as an inflammatory glomerular disease, mounting evidence supports the involvement of kidney inflammation as a key contributor in DKD pathogenesis, particularly through macrophages. However, detailed identification and corresponding phenotypic changes of macrophages in DKD remain poorly understood. To capture the gene expression changes in specific macrophage cell subsets in early DKD, we performed single-cell transcriptomic analysis of CD45-enriched kidney immune cells from type 1 diabetic OVE26 mice at two time points during the disease development. We also undertook a focused analysis of mononuclear phagocytes (macrophages and dendritic cells). Our results show increased resident and infiltrating macrophage subsets in the kidneys of mice with diabetes over time, with heightened expression of pro-inflammatory or anti-inflammatory genes in a subset-specific manner. Further analysis of macrophage polarization states in each subset in the kidneys showed changes consistent with the continuum of activation and differentiation states, with gene expression tending to shift toward undifferentiated phenotypes but with increased M1-like inflammatory phenotypes over time. By deconvolution analysis of RNAseq samples and by immunostaining of biopsies from patients with DKD, we further confirmed a differential expression of select genes in specific macrophage subsets essentially recapitulating the studies in mice. Thus, our study provides a comprehensive analysis of macrophage transcriptomic profiles in early DKD that underscores the dynamic macrophage phenotypes in disease progression.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Kidney/pathology , Kidney Glomerulus/pathology , Macrophage Activation , Macrophages/metabolism , Diabetes Mellitus/metabolism
15.
Kidney Int ; 102(2): 293-306, 2022 08.
Article in English | MEDLINE | ID: mdl-35469894

ABSTRACT

Recent epidemiological studies suggest that some patients with diabetes progress to kidney failure without significant albuminuria and glomerular injury, suggesting a critical role of kidney tubular epithelial cell (TEC) injury in diabetic kidney disease (DKD) progression. However, the major risk factors contributing to TEC injury and progression in DKD remain unclear. We previously showed that expression of endoplasmic reticulum-resident protein Reticulon-1A (RTN1A) increased in human DKD, and the increased RTN1A expression promoted TEC injury through endoplasmic reticulum (ER) stress response. Here, we show that TEC-specific RTN1A overexpression worsened DKD in mice, evidenced by enhanced tubular injury, tubulointerstitial fibrosis, and kidney function decline. But RTN1A overexpression did not exacerbate diabetes-induced glomerular injury or albuminuria. Notably, RTN1A overexpression worsened both ER stress and mitochondrial dysfunction in TECs under diabetic conditions by regulation of ER-mitochondria contacts. Mechanistically, ER-bound RTN1A interacted with mitochondrial hexokinase-1 and the voltage-dependent anion channel-1 (VDAC1), interfering with their association. This disengagement of VDAC1 from hexokinase-1 resulted in activation of apoptotic and inflammasome pathways, leading to TEC injury and loss. Thus, our observations highlight the importance of ER-mitochondrial crosstalk in TEC injury and the salient role of RTN1A-mediated ER-mitochondrial contact regulation in DKD progression.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Endoplasmic Reticulum , Mitochondria , Nerve Tissue Proteins , Albuminuria/metabolism , Animals , Apoptosis , Diabetes Mellitus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Hexokinase/metabolism , Humans , Mice , Mitochondria/metabolism , Nerve Tissue Proteins/genetics
16.
Kidney Int ; 102(1): 58-77, 2022 07.
Article in English | MEDLINE | ID: mdl-35483525

ABSTRACT

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Subject(s)
Kruppel-Like Factor 4 , Thrombotic Microangiopathies , Animals , Complement Activation , Complement System Proteins/metabolism , Endothelium , Humans , Kidney Glomerulus/pathology , Kruppel-Like Transcription Factors/genetics , Mice , Thrombotic Microangiopathies/pathology
17.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Article in English | MEDLINE | ID: mdl-34320838

ABSTRACT

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Subject(s)
Aorta, Thoracic/drug effects , Aortic Aneurysm, Thoracic/prevention & control , Aortic Dissection/prevention & control , Fibrillin-1/genetics , Marfan Syndrome/genetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Vascular Remodeling/drug effects , Adult , Aortic Dissection/enzymology , Aortic Dissection/genetics , Aortic Dissection/pathology , Animals , Aorta, Thoracic/enzymology , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/enzymology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Humans , Male , Marfan Syndrome/complications , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Severity of Illness Index , Signal Transduction , Smad3 Protein/metabolism
18.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Article in English | MEDLINE | ID: mdl-32883700

ABSTRACT

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Acute Kidney Injury/urine , Aged , Aged, 80 and over , COVID-19/mortality , Female , Hematuria/etiology , Hospital Mortality , Hospitals, Private/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Incidence , Inpatients , Leukocytes , Male , Middle Aged , New York City/epidemiology , Proteinuria/etiology , Renal Dialysis , Retrospective Studies , Treatment Outcome , Urine/cytology
19.
Am J Physiol Renal Physiol ; 320(5): F683-F692, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33645319

ABSTRACT

Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.


Subject(s)
Kidney Diseases/metabolism , Kidney/metabolism , Membrane Proteins/metabolism , Receptors, Retinoic Acid/metabolism , Tretinoin/metabolism , Animals , Cell Differentiation , Cell Proliferation , Humans , Kidney/drug effects , Kidney/pathology , Kidney/physiopathology , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Receptors, Retinoic Acid/agonists , Signal Transduction , Tretinoin/adverse effects
20.
Kidney Int ; 100(4): 745-747, 2021 10.
Article in English | MEDLINE | ID: mdl-34556297

ABSTRACT

Retinoic acid receptor responder protein 1 (RARRES1) has been identified as a novel gene for the regulation of podocyte function, and its expression is increased in glomerular disease and associated with disease progression. Increased expression of RARRES1 in podocytes leads to apoptosis through an autocrine effect. Möller-Hackbarth et al. recently found that RARRES1 expression is increased in the endothelial cells in some diseased kidneys to promote podocyte injury, likely through a paracrine effect.


Subject(s)
Kidney Diseases , Podocytes , Apoptosis , Endothelial Cells , Humans , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL