ABSTRACT
Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.
Subject(s)
Gene Drive Technology , Oryza , Hybridization, Genetic , Oryza/genetics , Plant Breeding/methods , Reproductive Isolation , Plant InfertilityABSTRACT
Carbohydrate partitioning between the source and sink tissues plays an important role in regulating plant growth and development. However, the molecular mechanisms regulating this process remain poorly understood. In this study, we show that elevated auxin levels in the rice dao mutant cause increased accumulation of sucrose in the photosynthetic leaves but reduced sucrose content in the reproductive organs (particularly in the lodicules, anthers, and ovaries), leading to closed spikelets, indehiscent anthers, and parthenocarpic seeds. RNA sequencing analysis revealed that the expression of AUXIN RESPONSE FACTOR 18 (OsARF18) and OsARF2 is significantly up- and down-regulated, respectively, in the lodicule of dao mutant. Overexpression of OsARF18 or knocking out of OsARF2 phenocopies the dao mutant. We demonstrate that OsARF2 regulates the expression of OsSUT1 through direct binding to the sugar-responsive elements (SuREs) in the OsSUT1 promoter and that OsARF18 represses the expression of OsARF2 and OsSUT1 via direct binding to the auxin-responsive element (AuxRE) or SuRE in their promoters, respectively. Furthermore, overexpression of OsSUT1 in the dao and Osarf2 mutant backgrounds could largely rescue the spikelets' opening and seed-setting defects. Collectively, our results reveal an auxin signaling cascade regulating source-sink carbohydrate partitioning and reproductive organ development in rice.
Subject(s)
Carbohydrate Metabolism , Flowers , Indoleacetic Acids , Oryza , Flowers/growth & development , Gene Expression Regulation, Plant , Gene Knockout Techniques , Indoleacetic Acids/metabolism , Mutation , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolismABSTRACT
The development of multifunctional MXene-based fabrics for smart textiles and portable devices has garnered significant attention. However, very limited studies have focused on their structure design and associated mechanical properties. Here, the supertough MXene fiber felts composed of MXene/sodium alginate (SA) fibers were fabricated. The fracture strength and bending stiffness of felts can be up to 97.8 MPa and 1.04 N mm2, respectively. Besides, the fracture toughness of felts was evaluated using the classic Griffith theory, yielding to a critical stress intensity factor of 1.79 MPam. In addition, this kind of felt presents outstanding electrothermal conversion performance (up to 119 °C at a voltage of 2.5 V), high cryogenic and high-temperature tolerance of photothermal conversion performance (-196 to 160 °C), and excellent electromagnetic interference (EMI) shielding effectiveness (54.4 dB in the X-band). This work provides new structural design concepts for high-performance MXene-based textiles, broadening their future applications.
ABSTRACT
Grain boundaries (GBs) in two-dimensional (2D) covalent organic frameworks (COFs) unavoidably form during the fabrication process, playing pivotal roles in the physical characteristics of COFs. Herein, molecular dynamics simulations were employed to elucidate the fracture failure and thermal transport mechanisms of polycrystalline COFs (p-COFs). The results revealed that the tilt angle of GBs significantly influences out-of-plane wrinkles and residual stress in monolayer p-COFs. The tensile strength of p-COFs can be enhanced and weakened with the tilt angle, which exhibits an inverse relationship with the defect density. The crack always originates from weaker heptagon rings during uniaxial tension. Notably, the thermal transport in p-COFs is insensitive to the GBs due to the variation of minor polymer chain length at defects, which is abnormal for other 2D crystalline materials. This study contributes insights into the impact of GBs in p-COFs and offers theoretical guidance for structural design and practical applications of advanced COFs.
ABSTRACT
Gallbladder cancer is a rare but fatal malignancy. However, the mechanisms underlying gallbladder carcinogenesis and its progression are poorly understood. The function of m6A modification and its regulators was still unclear for gallbladder cancer. The current study seeks to investigate the function of YTH m6A RNA-binding protein 1 (YTHDF1) in gallbladder cancer. Transcriptomic analysis and immunochemical staining of YTHDF1 in gallbladder cancer tissues revealed its upregulation compared to paracancerous tissues. Moreover, YTHDF1 promotes the proliferation assays, Transwell migration assays, and Transwell invasion assays of gallbladder cancer cells in vitro. And it also increased tumour growth in xenograft mouse model and metastases in tail vein injection model in vivo. In vitro, UHRF1 knockdown partly reversed the effects of YTHDF1 overexpression. Mechanistically, dual-luciferase assays proved that YTHDF1 promotes UHRF1 expression via direct binding to the mRNA 3'-UTR in a m6A-dependent manner. Overexpression of YTHDF1 enhanced UHRF1 mRNA stability, as demonstrated by mRNA stability assays, and Co-IP studies confirmed a direct interaction between YTHDF1 and PABPC1. Collectively, these findings provide new insights into the progression of gallbladder cancer as well as a novel post-transcriptional mechanism of YTHDF1 via stabilizing target mRNA.
Subject(s)
Adenosine , Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins , Ubiquitin-Protein Ligases , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/metabolism , Mice, Nude , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/geneticsABSTRACT
1D flexible fibers assembled 3D porous networked ceramic fiber aerogels (CFAs) are developed to overcome the brittleness of traditional ceramic particle aerogels. However, existing CFAs with disordered and quasi-ordered structures fail to balance the relationship between flexibility, robustness, and thermal insulation. Creating novel architectural CFAs with an excellent combination of performances has proven extremely challenging. In this paper, a novel strategy is adopted to fabricate porous mullite fibrous aerogels (MFAs) with ordered structures by combining fiber sedimentation and electric field-induced fiber alignment techniques. For the first time, electric field-induced alignment of ceramic fibers is utilized to prepare bulk aerogels on a large scale. The resulting MFAs exhibit ultra-low high-temperature thermal conductivity of 0.0830 W m-1 K-1 at 1000 °C, anisotropic mechanical and sound absorption performances, and multifunctionality in terms of the combination of thermal insulation, sound absorption, and hydrophobicity. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional CFAs for various applications.
ABSTRACT
Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.
ABSTRACT
It is well known that the traditional buckypaper (BP) is composed of a certain number of short carbon nanotubes (CNTs) intertwined with each other and sliding always happens when the BP is under tensile and impact loading, which results in inferior mechanical properties compared to single CNTs. In this work, a highly-entangled single-wire BP (SWBP) structure is constructed by a modified self-avoiding random walk approach. The in-plane mechanical properties and impacting behaviors of the SWBPs with different entanglement degrees and interface frictions are systematically investigated via newly developed coarse-grained molecular dynamics (CGMD) simulation. A coarse-grained method can effectively reflect the inter-tube van der Waals (vdW) interactions and the mechanical behaviors of CNTs, including tension, bending and adhesion. In this work, from the tensile simulations of the SWBP, the results showed that the self-locking mechanism between entangled CNTs could significantly enhance the tensile resistance of the film. Besides, the mechanical properties of the SWBP are highly dependent on the entanglement degree and the interface friction between CNTs. Furthermore, two distinct fracture modes, ductile fracture and brittle fracture, are revealed, which can be efficiently controlled by changing the related friction between CNTs. From the impacting simulations, it is found that the impacting performance can be effectively tuned by adjusting the entanglement degree of the film. In addition, the kinetic energy of the projectile could be rapidly dissipated through the stretching and bending of CNTs in the SWBP. This work provides an in-depth understanding of the effect of interface friction and entanglement degree on the mechanical properties of the buckypaper and provides a reference for the preparation of strong CNT-based micromaterials.
ABSTRACT
PURPOSE: This study aimed to develop a normal brain ageing model based on magnetic resonance imaging and radiomics, therefore identifying radscore, an imaging indicator representing white matter heterogeneity and exploring the significance of radscore in detecting people's cognitive changes. METHODS: Three hundred sixty cognitively normal (CN) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 105 CN subjects from the Parkinson's Progression Markers Initiative database were used to develop the model. In ADNI, 230 mild cognitive impairment (MCI) subjects were matched with 230 CN old-aged subjects to evaluate their heterogeneity difference. One hundred four MCI subjects with 48 months of follow-up were divided into low and high heterogeneity groups. Kaplan-Meier survival curve analysis was used to observe the importance of heterogeneity results for predicting MCI progression. RESULTS: The area under the receiver operating characteristic curve of the model in the training, internal test and external test sets was 0.7503, 0.7512 and 0.7514, respectively. There was a significantly positive correlation between age and radscore of CN subjects (r = 0.501; P < .001). The radscore of MCI subjects was significantly higher than that of matched CN subjects (P < .001). The median radscore ratios of MCI to CN from four age groups (66-70y, 71-75y, 76-80y and 81-85y) were 1.611, 1.760, 1.340 and 1.266, respectively. The probability to progression of low and high heterogeneity groups had a significant difference (P = .002). CONCLUSION: When radscore is significantly higher than that of normal ageing, it is necessary to alert the possibility of cognitive impairment and deterioration.
Subject(s)
Aging , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diagnosis , Aged , Male , Female , Aged, 80 and over , Aging/psychology , Brain/diagnostic imaging , Brain/pathology , Risk Factors , Age Factors , Predictive Value of Tests , Cognition , Databases, Factual , Case-Control Studies , Risk Assessment , White Matter/diagnostic imaging , White Matter/pathology , RadiomicsABSTRACT
BACKGROUND: Non-invasive identification of breast cancer (BCa) patients with pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) is critical to determine appropriate surgical strategies and guide the resection range of tumor. This study aimed to examine the effectiveness of a nomogram created by combining radiomics signatures from both intratumoral and derived tissues with clinical characteristics for predicting pCR after NACT. METHODS: The clinical data of 133 BCa patients were analyzed retrospectively and divided into training and validation sets. The radiomics features for Intratumoral, peritumoral, and background parenchymal enhancement (BPE) in the training set were dimensionalized. Logistic regression analysis was used to select the optimal feature set, and a radiomics signature was constructed using a decision tree. The signature was combined with clinical features to build joint models and generate nomograms. The area under curve (AUC) value of receiver operating characteristic (ROC) curve was then used to assess the performance of the nomogram and independent predictors. RESULTS: Among single region, intratumoral had the best predictive value. The diagnostic performance of the intratumoral improved after adding the BPE features. The AUC values of the radiomics signature were 0.822 and 0.82 in the training and validation sets. Multivariate logistic regression analysis revealed that age, ER, PR, Ki-67, and radiomics signature were independent predictors of pCR in constructing a nomogram. The AUC of the nomogram in the training and validation sets were 0.947 and 0.933. The DeLong test showed that the nomogram had statistically significant differences compared to other independent predictors in both the training and validation sets (P < 0.05). CONCLUSION: BPE has value in predicting the efficacy of neoadjuvant chemotherapy, thereby revealing the potential impact of tumor growth environment on the efficacy of neoadjuvant chemotherapy.
Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Nomograms , Retrospective Studies , Neoadjuvant Therapy , RadiomicsABSTRACT
BACKGROUND: The purpose of this study was to compare safety and efficacy outcomes between immediate breast reconstruction (IBR) and mastectomy alone in locally advanced breast cancer patients. METHODS: We conducted a comprehensive literature search of PUBMED, EMBASE, and Cochrane databases. The primary outcomes evaluated were overall survival, disease-free survival, and local recurrence. The secondary outcome was the incidence of surgical complications. All data were analyzed using Review Manager 5.3. RESULTS: Sixteen studies, involving 15,364 participants were included in this meta-analysis. Pooled data demonstrated that patients underwent IBR were more likely to experience surgical complications than those underwent mastectomy alone (HR: 3.96, 95%CI [1.07,14.67], p = 0.04). No significant difference was found in overall survival (HR: 0.94, 95%CI [0.73,1.20], p = 0.62), disease-free survival (HR: 1.03, 95%CI [0.83,1.27], p = 0.81), or breast cancer specific survival (HR: 0.93, 95%CI [0.71,1.21], p = 0.57) between IBR group and Non-IBR group. CONCLUSIONS: Our study demonstrates that IBR after mastectomy does not affect the overall survival and disease-free survival of locally advanced breast cancer patients. However, IBR brings with it a nonnegligible higher risk of complications and needs to be fully evaluated and carefully decided.
Subject(s)
Breast Neoplasms , Mammaplasty , Mastectomy , Postoperative Complications , Humans , Female , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Mastectomy/adverse effects , Mastectomy/methods , Mammaplasty/methods , Mammaplasty/adverse effects , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Prognosis , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/etiology , Survival RateABSTRACT
Exploring and designing two-dimensional (2D) nanomaterials for armor-piercing protection has become a research focus. Here, by molecular dynamics simulation, we revealed that the ultralight monolayer covalent organic framework (COF), one kind of novel 2D crystalline polymer, possesses superior impact-resistant capability under high-velocity impact. The calculated specific penetration energy is much higher than that of other traditional impact-resistant materials, such as steel, poly(methyl methacrylate), Kevlar, etc. It was found that the hexagonal nanopores integrated by polymer chains have large deformation compatibility resulting from flexible torsion and stretching, which can remarkably contribute to the energy dissipation. In addition, the deformable nanopores can effectively restrain the crack propagation, enable COF to resist multiple impacts. This work uncovers the extreme dynamic responses of COF under high-velocity impact and provides theoretical guidance for designing superstrong 2D polymer-based crystalline nanomaterials.
ABSTRACT
Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are promising nanomaterials due to their remarkable mechanical and electrical properties. However, the out-of-plane mechanical properties of MXene under impact loading remain unclear. Here, particular impact-resistant fracture behaviors and energy dissipation mechanisms of MXene were systemically investigated via molecular dynamics (MD) simulation. Specifically, it was found that the specific penetration energy of MXene exceeds most conventional impact-resistant materials, such as aluminum and polycarbonate. Two kinds of novel energy dissipation mechanisms, including radial fracture and crushed fracture under different impact velocities, are revealed. In addition, the sandwiched atomic-layer structure of MXene can deflect cracks and restrain their propagation to some extent, enabling the cracked MXene to retain remarkable resistance. This work provides in-depth insights into the impact-resistance of MXene, laying a foundation for its future applications.
ABSTRACT
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNA and involved in the carcinogenesis of various malignancies. However, the functions and mechanisms of m6A in gallbladder cancer (GBC) remain unclear. In this study, we investigated the role and underlying mechanism of the RNA-binding protein YT521-B homology domain-containing family protein 2 (YTHDF2), an m6A reader, in GBC. Herein, we detected that YTHDF2 was remarkably upregulated in GBC tissues compared to normal gallbladder tissues. Functionally, YTHDF2 overexpression promoted the proliferation, tumor growth, migration, and invasion of GBC cells while inhibiting the apoptosis in vitro and in vivo. Conversely, YTHDF2 knockdown induced opposite results. Mechanistically, we further investigated the underlying mechanism by integrating RNA immunoprecipitation sequencing (RIP-seq), m6A-modified RIP-seq, and RNA sequencing, which revealed that death-associated protein kinase 3 (DAPK3) is a direct target of YTHDF2. YTHDF2 binds to the 3'-UTR of DAPK3 mRNA and facilitates its degradation in an m6A-dependent manner. DAPK3 inhibition restores the tumor-suppressive phenotype induced by YTHDF2 deficiency. Moreover, the YTHDF2/DAPK3 axis induces the resistance of GBC cells to gemcitabine. In conclusion, we reveal the oncogenic role of YTHDF2 in GBC, demonstrating that YTHDF2 increases the mRNA degradation of the tumor suppressor DAPK3 in an m6A-dependent way, which promotes GBC progression and desensitizes GBC cells to gemcitabine. Our findings provide novel insights into potential therapeutic strategies for GBC.
Subject(s)
Gallbladder Neoplasms , Gemcitabine , Humans , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , RNA , Death-Associated Protein Kinases/metabolismABSTRACT
BACKGROUND: Adenoma-adenocarcinoma transition is a key feature of colorectal cancer (CRC) occurrence and is closely regulated by tumor-associated macrophages (TAMs) and CD8+ T cells. Here, we investigated the effect of the NF-κB activator 1 (Act1) downregulation of macrophages in the adenoma-adenocarcinoma transition. METHODS: This study used spontaneous adenoma-developing ApcMin/+, macrophage-specific Act1-knockdown (anti-Act1), and ApcMin/+; anti-Act1 (AA) mice. Histological analysis was performed on CRC tissues of patients and mice. CRC patients' data retrieved from the TCGA dataset were analyzed. Primary cell isolation, co-culture system, RNA-seq, and fluorescence-activated cell sorting (FACS) were used. RESULTS: By TCGA and TISIDB analysis, the downregulation of Act1 expression in tumor tissues of CRC patients negatively correlated with accumulated CD68+ macrophages in the tumor. Relative expression of EMT markers in the tumor enriched ACT1lowCD68+ macrophages of CRC patients. AA mice showed adenoma-adenocarcinoma transition, TAMs recruitment, and CD8+ T cell infiltration in the tumor. Macrophages depletion in AA mice reversed adenocarcinoma, reduced tumor amounts, and suppressed CD8+ T cell infiltration. Besides, macrophage depletion or anti-CD8a effectively inhibited metastatic nodules in the lung metastasis mouse model of anti-Act1 mice. CRC cells induced activation of IL-6/STAT3 and IFN-γ/NF-κB signaling and the expressions of CXCL9/10, IL-6, and PD-L1 in anti-Act1 macrophages. Anti-Act1 macrophages facilitated epithelial-mesenchymal-transition and CRC cells' migration via CXCL9/10-CXCR3-axis. Furthermore, anti-Act1 macrophages promoted exhaustive PD1+ Tim3+ CD8+ T cell formation. Anti-PD-L1 treatment repressed adenoma-adenocarcinoma transition in AA mice. Silencing STAT3 in anti-Act1 macrophages reduced CXCL9/10 and PD-L1 expression and correspondingly inhibited epithelial-mesenchymal-transition and CRC cells' migration. CONCLUSIONS: Act1 downregulation in macrophages activates STAT3 that promotes adenoma-adenocarcinoma transition via CXCL9/10-CXCR3-axis in CRC cells and PD-1/PD-L1-axis in CD8+ T cells.
Subject(s)
Adenocarcinoma , Adenoma , Colorectal Neoplasms , Animals , Mice , Adenocarcinoma/pathology , Adenoma/genetics , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Colorectal Neoplasms/pathology , Down-Regulation , Epithelial-Mesenchymal Transition , Immunosuppression Therapy , Interleukin-6 , Macrophages/metabolism , Macrophages/pathology , NF-kappa B/metabolism , HumansABSTRACT
The thriving 5G communication technology leads to the high demand for EMI shielding materials and thermal management materials. Particularly, portable thermal-sensitive electronic devices have more stringent requirements for thermal insulation performances. In most cases, ultrathin EMI shielding materials integrated with ultralow thermal conductivity are not easy to be achieved. To overcome this obstacle, dual protective porous composite films based on Ti3 C2 Tx MXene and polyimide are fabricated by sacrificing polymethyl methacrylate (PMMA) templates. By optimizing the contact thermal resistance and Kapitza resistance, the composite film presents superior thermal insulation performances with a thermal conductivity of 0.0136 W m-1 K-1 . Moreover, the hybrid porous film maintains superior EMI shielding effectiveness of 63.0 dB and high SSE/t of 31651.2 dB cm2 g-1 . Nevertheless, the excellent active and passive heating ability based on Joule heating and photothermal conversion makes the composite film an ideal portable material for thermal management. This work sheds light on designing thermal management materials and EMI shielding materials for cutting-edge electronic devices.
ABSTRACT
Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps has generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved. The theoretical model presented gives a prediction of high probabilities of few-atom loading rates under proper experimental conditions. This work provides an alternative approach to the control of the few-atom dynamics in a dipole trap and the study of the collective quantum optical effects of a few atoms.
ABSTRACT
Cancer immunotherapy has been proven to be clinically effective in multiple types of cancers. Lymphocyte function-associated antigen 1 (LFA-1), a member of the integrin family of adhesion molecules, is expressed mainly on αß T cells. LFA-1 is associated with tumor immune responses, but its exact mechanism remains unknown. Here, two kinds of mice tumor model of LFA-1 knockout (LFA-1-/-) mice bearing subcutaneous tumor and Apc Min/+;LFA-1-/- mice were used to confirm that LFA-1 knockout resulted in inhibition of tumor growth. Furthermore, it also demonstrated that the numbers of regulatory T cells (Treg cells) in the spleen, blood, mesenteric lymph nodes were decreased in LFA-1-/- mice, and the numbers of Treg cells in mesenteric lymph nodes were also decreased in Apc Min/+;LFA-1-/- mice compared with Apc Min/+ mice. LFA-1 inhibitor (BIRT377) was administered to subcutaneous tumor-bearing LFA-1+/+ mice, and the results showed that the tumor growth was inhibited and the number of Treg cells was reduced. The analysis of TIMER tumor database indicated that LFA-1 expression is positively associated with Treg cells and TNM stage. Conclusively, this suggests that LFA-1 knockout would inhibit tumor growth and is correlated with Treg cells. LFA-1 may be one potential target for cancer immunotherapy. Video Abstract.
Subject(s)
Lymphocyte Function-Associated Antigen-1 , Neoplasms , Animals , Mice , T-Lymphocytes, Regulatory , Spleen , Databases, FactualABSTRACT
Boron carbide ceramics are often considered ideal materials for lightweight bulletproof armor, but their anomalous brittle failure at hypervelocity impact limits their use. Recent experiments have reported that nanotwins are ubiquitous in boron carbide and that nanotwinned samples are harder than the twin-free boron carbide, but although the strengthening effect of nanotwins on metals and alloys is well-established, their role in boron carbide ceramics is not well understood. In this study, we used classical molecular dynamics simulations to investigate how nanoscale twins affect the mechanical properties of boron carbide ceramics. Our classical molecular dynamics results show that introducing nanotwins in boron carbide can increase the shear strength limit by 19.72%, reduce the number of amorphized atoms, and narrow the width of the amorphous shear band. Under indentation load, nanotwins can also increase the compressive shear strength limit of boron carbide by 15.97% and change the crystal formation direction and region of the amorphous shear band. These findings suggest that twin boundaries can hinder the expansion of the amorphous shear band and provide a new design idea for improving the impact resistance of boron carbide ceramics and avoiding their abnormal brittle failure.
ABSTRACT
CoSb3 shows intrinsically excellent electric transport performance but high thermal conductivity, resulting in low thermoelectric performance. The use of graphene to form heterogeneous interfaces shows great potential for significantly lessening the lattice thermal conductivity (κL) in CoSb3-based composites. Molecular dynamics (MD) simulations are carried out in the present work to study the interfacial thermal conductance across the CoSb3-graphene interface in the temperature range of 300 K to 800 K. The interfacial thermal conductance exhibits irregular fluctuations with temperature and CoSb3 length. Furthermore, we explored the effect of graphene layers on the interfacial heat transport of the CoSb3-graphene system. The results demonstrate that graphene layers affect the interfacial thermal conductance due to the suppression of heat flux in multilayer graphene across the c-axis. The phonon density of states (PDOS) of the CoSb3-graphene system reveals a decreased low-frequency vibration mode at 0-7 THz and an enhanced high-frequency vibration mode compared with those of CoSb3, indicating that thermal transport can be effectively suppressed by the addition of graphene.