Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155857

ABSTRACT

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Subject(s)
Sulfates , Sulfur , Sulfates/metabolism , Oxidation-Reduction , Sulfur/metabolism , Sulfides/metabolism , Sulfur Oxides
2.
Nature ; 563(7729): E18, 2018 11.
Article in English | MEDLINE | ID: mdl-30135587

ABSTRACT

In this Letter, the links to Supplementary Videos 5, 7, 9 and 10 were incorrect, and there were some formatting errors in the Supplementary Video legends. These errors have been corrected online.

3.
Nature ; 557(7707): 701-705, 2018 05.
Article in English | MEDLINE | ID: mdl-29760468

ABSTRACT

Ion hydration and transport at interfaces are relevant to a wide range of applied fields and natural processes1-5. Interfacial effects are particularly profound in confined geometries such as nanometre-sized channels6-8, where the mechanisms of ion transport in bulk solutions may not apply9,10. To correlate atomic structure with the transport properties of hydrated ions, both the interfacial inhomogeneity and the complex competing interactions among ions, water and surfaces require detailed molecular-level characterization. Here we constructed individual sodium ion (Na+) hydrates on a NaCl(001) surface by progressively attaching single water molecules (one to five) to the Na+ ion using a combined scanning tunnelling microscopy and noncontact atomic force microscopy system. We found that the Na+ ion hydrated with three water molecules diffuses orders of magnitude more quickly than other ion hydrates. Ab initio calculations revealed that such high ion mobility arises from the existence of a metastable state, in which the three water molecules around the Na+ ion can rotate collectively with a rather small energy barrier. This scenario would apply even at room temperature according to our classical molecular dynamics simulations. Our work suggests that anomalously high diffusion rates for specific hydration numbers of ions are generally determined by the degree of symmetry match between the hydrates and the surface lattice.

4.
Environ Res ; 257: 119272, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38823613

ABSTRACT

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.


Subject(s)
Bacteria , Bays , Bays/microbiology , Bacteria/genetics , Microbiota/drug effects , Biodiversity , Water Quality , Estuaries
5.
Bull Math Biol ; 86(3): 31, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38353870

ABSTRACT

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.


Subject(s)
COVID-19 , SARS-CoV-2 , United States/epidemiology , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Mathematical Concepts , Models, Biological , Vaccination
6.
Glob Chang Biol ; 29(2): 391-403, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36203244

ABSTRACT

Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.


Subject(s)
Microbiota , Rivers , Cities , Water , China
7.
Environ Sci Technol ; 57(37): 14036-14045, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37665676

ABSTRACT

Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.


Subject(s)
Environmental Pollutants , Trichloroethylene , Vinyl Chloride , Soil , Humic Substances , Acetylene , Halogenation
8.
Environ Sci Technol ; 57(15): 6108-6118, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37026396

ABSTRACT

Drinking water systems host a wide range of microorganisms essential for biosafety. However, one major group of waterborne pathogens, protozoa, is relatively neglected compared to bacteria and other microorganisms. Until now, little is known about the growth and fate of protozoa and their associated bacteria in drinking water systems. In this study, we aim to investigate how drinking water treatment affects the growth and fate of protozoa and their associated bacteria in a subtropical megacity. The results showed that viable protozoa were prevalent in the city's tap water, and amoebae were the major component of tap water protozoa. In addition, protozoan-associated bacteria contained many potential pathogens and were primarily enriched in amoeba hosts. Furthermore, this study showed that current drinking water disinfection methods have little effect on protozoa and their associated bacteria. Besides, ultrafiltration membranes unexpectedly served as an ideal growth surface for amoebae in drinking water systems, and they could significantly promote the growth of amoeba-associated bacteria. In conclusion, this study shows that viable protozoa and their associated bacteria are prevalent in tap water, which may present an emerging health risk in drinking water biosafety.


Subject(s)
Amoeba , Drinking Water , Water Purification , Water Microbiology , Bacteria , Ultrafiltration , Amoeba/microbiology
9.
Environ Res ; 231(Pt 2): 116184, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37207729

ABSTRACT

Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.


Subject(s)
Denitrification , Phylogeny
10.
Environ Res ; 239(Pt 1): 117310, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37805181

ABSTRACT

Deciphering the vertical connectivity of oceanic microbiome and metabolome is crucial for understanding the carbon sequestration and achieving the carbon neutrality. However, we lack a systematic view of the interplay among particle transport, microbial community, and metabolic trait across depths. Through integrating the biogeochemical, microbial, and metabolic characteristics of a deep cold-seep water column (∼1989 m), we find the altered connectivity of microbial community and dissolved organic matter (DOM) across depths. Both the microbial communities (bacteria and protists) and DOM show a clear compositional connectivity from surface to the depth of 1000 m, highlighting the controls of sinking particle over microbial connectivity from the epipelagic to mesopelagic zone. However, due to the biological migration and ocean mixing, the fecal-associated bacteria and protistan consumers unexpectedly emerge and the degradation index of DOM substantially alters around 1000-1200 m. Collectively, we unveil the significance of multi-faceted particle dispersion, which supports the connectivity and variability of deep ocean microbial communities.


Subject(s)
Metabolome , Microbiota , Carbon , Carbon Sequestration , Dissolved Organic Matter , Water
11.
Proc Natl Acad Sci U S A ; 117(52): 33317-33324, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318221

ABSTRACT

Whether and how CO2 and nitrogen (N) availability interact to influence carbon (C) cycling processes such as soil respiration remains a question of considerable uncertainty in projecting future C-climate feedbacks, which are strongly influenced by multiple global change drivers, including elevated atmospheric CO2 concentrations (eCO2) and increased N deposition. However, because decades of research on the responses of ecosystems to eCO2 and N enrichment have been done largely independently, their interactive effects on soil respiratory CO2 efflux remain unresolved. Here, we show that in a multifactor free-air CO2 enrichment experiment, BioCON (Biodiversity, CO2, and N deposition) in Minnesota, the positive response of soil respiration to eCO2 gradually strengthened at ambient (low) N supply but not enriched (high) N supply for the 12-y experimental period from 1998 to 2009. In contrast to earlier years, eCO2 stimulated soil respiration twice as much at low than at high N supply from 2006 to 2009. In parallel, microbial C degradation genes were significantly boosted by eCO2 at low but not high N supply. Incorporating those functional genes into a coupled C-N ecosystem model reduced model parameter uncertainty and improved the projections of the effects of different CO2 and N levels on soil respiration. If our observed results generalize to other ecosystems, they imply widely positive effects of eCO2 on soil respiration even in infertile systems.


Subject(s)
Carbon Dioxide/pharmacology , Grassland , Nitrogen/pharmacology , Soil/chemistry , Aerobiosis , Computer Simulation , Soil Microbiology
12.
Sensors (Basel) ; 23(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36850496

ABSTRACT

Forest fires can destroy forest and inflict great damage to the ecosystem. Fortunately, forest fire detection with video has achieved remarkable results in enabling timely and accurate fire warnings. However, the traditional forest fire detection method relies heavily on artificially designed features; CNN-based methods require a large number of parameters. In addition, forest fire detection is easily disturbed by fog. To solve these issues, a lightweight YOLOX-L and defogging algorithm-based forest fire detection method, GXLD, is proposed. GXLD uses the dark channel prior to defog the image to obtain a fog-free image. After the lightweight improvement of YOLOX-L by GhostNet, depth separable convolution, and SENet, we obtain the YOLOX-L-Light and use it to detect the forest fire in the fog-free image. To evaluate the performance of YOLOX-L-Light and GXLD, mean average precision (mAP) was used to evaluate the detection accuracy, and network parameters were used to evaluate the lightweight effect. Experiments on our forest fire dataset show that the number of the parameters of YOLOX-L-Light decreased by 92.6%, and the mAP increased by 1.96%. The mAP of GXLD is 87.47%, which is 2.46% higher than that of YOLOX-L; and the average fps of GXLD is 26.33 when the input image size is 1280 × 720. Even in a foggy environment, the GXLD can detect a forest fire in real time with a high accuracy, target confidence, and target integrity. This research proposes a lightweight forest fire detection method (GXLD) with fog removal. Therefore, GXLD can detect a forest fire with a high accuracy in real time. The proposed GXLD has the advantages of defogging, a high target confidence, and a high target integrity, which makes it more suitable for the development of a modern forest fire video detection system.

13.
J Environ Sci (China) ; 127: 375-388, 2023 May.
Article in English | MEDLINE | ID: mdl-36522069

ABSTRACT

Altrenogest (ALT), drospirenone (DRO), and melengestrol acetate (MLA) are three highly potent synthetic progestins that can be released into agricultural soils, while their fate in soil minerals remains unclear. This study explored the transformation of these progestins in MnO2, SiO2, and ferrihydrite suspensions and identified their transformation products (TPs) via high resolution mass spectrometry and density functional theory calculations. Transformations were only observed for DRO and MLA in SiO2 suspension and ALT in MnO2 suspension (half-lives = 0.86 min - 9.90 day). ALT transformation was facilitated at higher MnO2 loadings, while DRO and MLA transformations were inhibited at higher SiO2 loadings. These data indicated that hydrophobic partitioning interaction was dominant at higher SiO2 loadings rather than specific interaction, which limited subsequent surface-catalyzed transformation. ALT transformation rate decreased with increasing pH because MnO2 reduction requires proton participation. In contrast, relatively high pH facilitated MLA and DRO transformation, indicating that base-catalyzed hydrolysis occurred in SiO2 suspension. The clustermap demonstrated the formation of abundant TPs. Lactone ring and acetoxy group hydrolysis was the major transformation pathway for DRO and MLA, with estimated yields of 57.7% and 173.2% at 6 day, respectively. ALT experienced C12 hydroxylation and formed the major TP 326g (yield of 15.4% at 8 hr). ALT also experienced allyl group oxidation and subsequent C5 hydroxylation, forming the major TP 344a (yield of 14.1% at 8 hr). This study demonstrates that TPs of metastable progestins are likely the main species in soils and that TP identification is a particular priority for risk assessment.


Subject(s)
Manganese Compounds , Soil , Soil/chemistry , Progestins , Suspensions , Silicon Dioxide , Oxides , Minerals , Progesterone Congeners , Oxidation-Reduction
14.
Environ Sci Technol ; 56(12): 9052-9062, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35544746

ABSTRACT

Soil protists are essential but often overlooked in soil and could impact microbially driven element cycling in natural ecosystems. However, how protists influence heavy metal cycling in soil remains poorly understood. In this study, we used a model protist, Dictyostelium discoideum, to explore the effect of interactions between soil amoeba and metal-reducing bacteria on the reduction of soil Fe(III) and Cr(VI). We found that D. discoideum could preferentially prey on the Fe(III)-reducing bacterium Shewanella decolorationis S12 and significantly decrease its biomass. Surprisingly, this predation pressure also stimulated the activity of a single S. decolorationis S12 bacterium to reduce Fe(III) by enhancing the content of electron-transfer protein cyt c, intracellular ATP synthesis, and reactive oxygen species (e.g., H2O2). We also found that D. discoideum could not prey on the Cr(VI)-reducing bacterium Brevibacillus laterosporus. In contrast, B. laterosporus became edible to amoebae in the presence of S. decolorationis S12, and their Cr(VI) reduction ability decreased under amoeba predation pressure. This study provides direct evidence that protists can affect the Cr and Fe cycling via the elective predation pressure on the metal-reducing bacteria, broadening our horizons of predation of protists on soil metal cycling.


Subject(s)
Amoeba , Dictyostelium , Amoeba/metabolism , Amoeba/microbiology , Animals , Chromium/metabolism , Dictyostelium/metabolism , Dictyostelium/microbiology , Ecosystem , Hydrogen Peroxide , Iron/metabolism , Metals , Oxidation-Reduction , Predatory Behavior , Soil
15.
Environ Sci Technol ; 56(8): 4936-4949, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35348318

ABSTRACT

Nano- and microplastics have become a serious global concern, threatening our living environments. Previous studies have shown that many organisms, including bacteria, animals, and plants, can be affected by microplastics. However, little is known about one ecologically important group of soil organisms, the protists. In this study, we investigated how polystyrene micro- and nanoplastics interacted with a soil amoeba Dictyostelium discoideum. The results showed that environmental concentrations of nano- and microplastics could negatively affect the soil amoeba's fitness and development. D. discoideum ingested both nano- and microplastics through phagocytosis but packed and excreted them during slug migration, which also promoted their biodegradation. Fourier transform infrared spectroscopy analyses revealed the formation of new oxygen-containing functional groups and the sign of possible oxidation of polystyrene. Also, nano- and microplastic exposure disrupted the nutrient and energy metabolisms of D. discoideum and affected the expression of key genes (e.g., cf45-1, dcsA, aprA, dymB, and gefB) related to morphogenesis and phagocytosis. In conclusion, our results show that nano- and microplastics have complex bilateral interactions with the soil amoeba, affecting each other's fate in the soil environment. This study provides new insights into how soil protists interact with nano- and microplastics in the soil ecosystem.


Subject(s)
Amoeba , Dictyostelium , Amoeba/microbiology , Animals , Ecosystem , Microplastics , Plastics , Polystyrenes , Soil
16.
Environ Sci Technol ; 56(20): 14852-14866, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36098560

ABSTRACT

Suspended particulate matter (SPM) contributes to the loss of reactive nitrogen (Nr) in estuarine ecosystems. Although denitrification and anaerobic ammonium oxidation in SPM compensate for the current imbalance of global nitrogen (N) inputs and sinks, it is largely unclear whether other pathways for Nr transformation exist in SPM. Here, we combined stable isotope measurements with metagenomics and metatranscriptomics to verify the occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in the SPM of the Pearl River Estuary (PRE). Surprisingly, the conventional functional genes of DNRA (nirBD) were abundant and highly expressed in SPM, which was inconsistent with a low potential rate. Through taxonomic and comparative genomic analyses, we demonstrated that nitrite reductase (NirBD) in conjunction with assimilatory nitrate reductase (NasA) performed assimilatory nitrate reduction (ANR) in SPM, and diverse alpha- and gamma-proteobacterial lineages were identified as key active heterotrophic ANR bacteria. Moreover, ANR was predicted to have a relative higher occurrence than denitrification and DNRA in a survey of Nr transformation pathways in SPM across the PRE spanning 65 km. Collectively, this study characterizes a previously overlooked pathway of Nr transformation mediated by heterotrophic ANR bacteria in SPM and has important implications for our understanding of N cycling in estuaries.


Subject(s)
Ammonium Compounds , Nitrogen , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteria/metabolism , Denitrification , Ecosystem , Nitrate Reductases/metabolism , Nitrates/metabolism , Nitrite Reductases/metabolism , Nitrogen/analysis , Nitrogen Oxides , Organic Chemicals/metabolism , Oxidation-Reduction , Particulate Matter
17.
Proc Natl Acad Sci U S A ; 116(30): 15096-15105, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285347

ABSTRACT

Northern-latitude tundra soils harbor substantial carbon (C) stocks that are highly susceptible to microbial degradation with rising global temperatures. Understanding the magnitude and direction (e.g., C release or sequestration) of the microbial responses to warming is necessary to accurately model climate change. In this study, Alaskan tundra soils were subjected to experimental in situ warming by ∼1.1 °C above ambient temperature, and the microbial communities were evaluated using metagenomics after 4.5 years, at 2 depths: 15 to 25 cm (active layer at outset of the experiment) and 45 to 55 cm (transition zone at the permafrost/active layer boundary at the outset of the experiment). In contrast to small or insignificant shifts after 1.5 years of warming, 4.5 years of warming resulted in significant changes to the abundances of functional traits and the corresponding taxa relative to control plots (no warming), and microbial shifts differed qualitatively between the two soil depths. At 15 to 25 cm, increased abundances of carbohydrate utilization genes were observed that correlated with (increased) measured ecosystem carbon respiration. At the 45- to 55-cm layer, increased methanogenesis potential was observed, which corresponded with a 3-fold increase in abundance of a single archaeal clade of the Methanosarcinales order, increased annual thaw duration (45.3 vs. 79.3 days), and increased CH4 emissions. Collectively, these data demonstrate that the microbial responses to warming in tundra soil are rapid and markedly different between the 2 critical soil layers evaluated, and identify potential biomarkers for the corresponding microbial processes that could be important in modeling.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Microbiota/genetics , Models, Statistical , Soil Microbiology , Tundra , Alaska , Arctic Regions , Carbon/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Climate Change/statistics & numerical data , Permafrost/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Temperature
18.
Ecotoxicol Environ Saf ; 232: 113289, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35144128

ABSTRACT

Antibiotic resistance genes (ARGs) are ubiquitous in nature, especially in the current era of antibiotic abuse, and their existence is a global concern. In the present study, we discovered that Antarctic krill-related culturable bacteria are resistant to ß-lactam, tetracyclines, aminoglycosides, and sulphamethoxazole/trimethoprim based on the antibiotic efflux mechanism. In addition, the co-occurrence of ARGs with insertion sequence (IS) (tnpA, IS91) and Intl1 on the isolates and the phylogenetic analysis results of the whole-genome revealed low-frequency ARG transfer events, implying the transferability of these ARGs. These findings provide an early warning for the wide assessment of Antarctic microbiota in the spread of ARGs. Our work provides novel insights into understanding ARGs in culturable host-associated microorganisms, and their ecological risks and has important implications for future risk assessments of antibiotic resistance in extreme environments.


Subject(s)
Anti-Bacterial Agents , Euphausiacea , Animals , Bacteria/genetics , Euphausiacea/genetics , Genes, Bacterial , Phylogeny
19.
Environ Microbiol ; 23(1): 431-447, 2021 01.
Article in English | MEDLINE | ID: mdl-33201573

ABSTRACT

Gut microbiota could facilitate host to defense diseases, but fish-microbiota interactions during viral infection and the underlying mechanism are poorly understood. We examined interactions and responses of gut microbiota to grass carp reovirus (GCRV) infection in Ctenopharyngodon idellus, which is the most important aquaculture fish worldwide. We found that GCRV infection group with serious haemorrhagic symptoms (G7s) showed considerably different gut microbiota, especially with an abnormally high abundance of gram-negative anaerobic Cetobacterium somerae. It also showed the lowest (p < 0.05) alpha-diversity but with much higher ecological process of homogenizing dispersal (28.8%), confirming a dysbiosis of the gut microbiota after viral infection. Interestingly, signaling pathways of NOD-like receptors (NLRs), toll-like receptors (TLRs), and lipopolysaccharide (LPS) stimulation genes were significantly (q-value < 0.01) enriched in G7s, which also significantly (p < 0.01) correlated with the core gut microbial genera of Cetobacterium and Acinetobacter. The results suggested that an expansion of C. somerae initiated by GCRV could aggravate host inflammatory reactions through the LPS-related NLRs and TLRs pathways. This study advances our understanding of the interplay between fish immunity and gut microbiota challenged by viruses; it also sheds new insights for ecological defense of fish diseases with the help of gut microbiota.


Subject(s)
Carps/microbiology , Carps/virology , Fish Diseases/virology , Gastrointestinal Microbiome , Mammalian orthoreovirus 3/physiology , Reoviridae Infections/veterinary , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fish Diseases/microbiology , Fusobacteria , Host-Pathogen Interactions , Mammalian orthoreovirus 3/classification , Mammalian orthoreovirus 3/genetics , Mammalian orthoreovirus 3/isolation & purification , Reoviridae Infections/microbiology , Reoviridae Infections/virology
20.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33158887

ABSTRACT

Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.


Subject(s)
Amoeba/physiology , Bacterial Physiological Phenomena , Microbial Interactions , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL