Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Cell Sci ; 125(Pt 17): 4137-46, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22685328

ABSTRACT

VE-cadherin-mediated cell-cell junction weakening increases paracellular permeability in response to both angiogenic and inflammatory stimuli. Although Semaphorin 3A has emerged as one of the few known anti-angiogenic factors to exhibit pro-permeability activity, little is known about how it triggers vascular leakage. Here we report that Semaphorin 3A induced VE-cadherin serine phosphorylation and internalisation, cell-cell junction destabilisation, and loss of barrier integrity in brain endothelial cells. In addition, high-grade glioma-isolated tumour-initiating cells were found to secrete Semaphorin 3A, which promoted brain endothelial monolayer permeability. From a mechanistic standpoint, Semaphorin 3A impinged upon the basal activity of the serine phosphatase PP2A and disrupted PP2A interaction with VE-cadherin, leading to cell-cell junction disorganization and increased permeability. Accordingly, both pharmacological inhibition and siRNA-based knockdown of PP2A mimicked Semaphorin 3A effects on VE-cadherin. Hence, local Semaphorin 3A production impacts on the PP2A/VE-cadherin equilibrium and contributes to elevated vascular permeability.


Subject(s)
Cell Membrane Permeability , Endothelial Cells/enzymology , Endothelial Cells/pathology , Protein Phosphatase 2/metabolism , Semaphorin-3A/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/enzymology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Enzyme Activation , Glioma/enzymology , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/metabolism , Protein Phosphatase 2/antagonists & inhibitors , src-Family Kinases/metabolism
2.
Blood ; 120(13): 2745-56, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-22898603

ABSTRACT

DEP-1/CD148 is a receptor-like protein tyrosine phosphatase with antiproliferative and tumor-suppressive functions. Interestingly, it also positively regulates Src family kinases in hematopoietic and endothelial cells, where we showed it promotes VE-cadherin-associated Src activation and endothelial cell survival upon VEGF stimulation. However, the molecular mechanism involved and its biologic functions in endothelial cells remain ill-defined. We demonstrate here that DEP-1 is phosphorylated in a Src- and Fyn-dependent manner on Y1311 and Y1320, which bind the Src SH2 domain. This allows DEP-1-catalyzed dephosphorylation of Src inhibitory Y529 and favors the VEGF-induced phosphorylation of Src substrates VE-cadherin and Cortactin. Accordingly, RNA interference (RNAi)-mediated knockdown of DEP-1 or expression of DEP-1 Y1311F/Y1320F impairs Src-dependent biologic responses mediated by VEGF including permeability, invasion, and branching capillary formation. In addition, our work further reveals that above a threshold expression level, DEP-1 can also dephosphorylate Src Y418 and attenuate downstream signaling and biologic responses, consistent with the quiescent behavior of confluent endothelial cells that express the highest levels of endogenous DEP-1. Collectively, our findings identify the VEGF-dependent phosphorylation of DEP-1 as a novel mechanism controlling Src activation, and show this is essential for the proper regulation of permeability and the promotion of the angiogenic response.


Subject(s)
Capillaries/metabolism , Cell Membrane Permeability , Endothelium, Vascular/cytology , Neovascularization, Pathologic , Tyrosine/metabolism , src-Family Kinases/metabolism , Antigens, CD/metabolism , Blotting, Western , Cadherins/metabolism , Cell Adhesion , Cell Movement , Cell Proliferation , Cells, Cultured , Cortactin/metabolism , Endothelium, Vascular/metabolism , Fluorescent Antibody Technique , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunoprecipitation , Mutation/genetics , Neoplasm Invasiveness , Phosphorylation , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
3.
Cell Commun Signal ; 11(1): 37, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23714586

ABSTRACT

BACKGROUND: The endothelial specific cell-cell adhesion molecule, VE-cadherin, modulates barrier function and vascular homeostasis. In this context, we have previously characterized that VEGF (vascular endothelial growth factor) leads to VE-cadherin phosphorylation, ß-arrestin2 recruitment and VE-cadherin internalization in mouse endothelial cells. However, exactly how this VE-cadherin/ß-arrestin complex contributes to VEGF-mediated permeability in human endothelial cells remains unclear. In this study, we investigated in-depth the VE-cadherin/ß-arrestin interactions in human endothelial cells exposed to VEGF. FINDINGS: First, we demonstrated that VEGF induces VE-cadherin internalization in a clathrin-dependent manner in human umbilical vein endothelial cells (HUVEC). In addition to the classical components of endocytic vesicles, ß-arrestin1 was recruited and bound to phosphorylated VE-cadherin. Molecular mapping of this interaction uncovered that the C-terminus tail of ß-arrestin1, that comprises amino acids 375 to 418, was sufficient to directly interact with the phosphorylated form of VE-cadherin. Interestingly, the expression of the C-terminus tail of ß-arrestin1 induced loss of surface exposed-VE-cadherin, promoted monolayer disorganization and enhanced permeability. Finally, this effect relied on decreased VE-cadherin expression at the transcriptional level, through inhibition of its promoter activity. CONCLUSIONS: Altogether, our results demonstrate that ß-arrestin1 might play multiple functions collectively contributing to endothelial barrier properties. Indeed, in addition to a direct implication in VE-cadherin endocytosis, ß-arrestin1 could also control VE-cadherin transcription and expression. Ultimately, understanding the molecular mechanisms involved in VE-cadherin function might provide therapeutic tools for many human diseases where the vascular barrier is compromised.

4.
Front Oncol ; 3: 211, 2013.
Article in English | MEDLINE | ID: mdl-23967403

ABSTRACT

The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents.

5.
PLoS One ; 7(9): e45562, 2012.
Article in English | MEDLINE | ID: mdl-23029099

ABSTRACT

Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.


Subject(s)
Brain Neoplasms/metabolism , Capillary Permeability , Endothelial Cells/metabolism , Glioblastoma/metabolism , Interleukin-8/metabolism , Receptors, Interleukin-8B/metabolism , Brain Neoplasms/genetics , Capillary Permeability/drug effects , Cell Line, Tumor , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Interleukin-8/pharmacology , Receptors, Interleukin-8B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL